Матрицы. называются снова основной и расширенной матрицами системы уравнений (5)
называются снова основной и расширенной матрицами системы уравнений (5). Знаменатель в формуле (6) называется определителем или детерминантом квадратной матрицы 3-го порядка А. Итак, согласно определению
Объединяя справа члены, содержащие элементы , и вспоминая формулу (3), получим
= . (8)
Формулу (8) легко запомнить. Для краткости вместо того, чтобы говорить определитель матрицы 2-го порядка, 3-го порядка, говорят определитель 2-го, 3-го порядка. Три определителя 2-го порядка в формуле (8) получаются из находящегося в ней определителя 3-го порядка вычеркиванием первой строки и соответственно 1-го, 2-го и 3-го столбцов. Далее, определитель 2-го порядка, получившийся вычеркиванием 1-й строки и j- го столбца, следует умножить на элемент, находящийся в первой строке и j- м столбце, все произведения снабдить чередующимися знаками и сложить. В результате и получится определитель 3-го порядка.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | Поиск по сайту:
|