|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Синтетические бескупонные облигацииЧасто на финансовом рынке отсутствуют бескупонные облигации заданного качества для заданного срока погашения. Тем не менее методика оценки рыночной стоимости облигаций, описанная выше, может быть использована. В случае отсутствия бескупонных облигаций под чистыми доходностями понимаются доходности так называемых синтетических бескупонных облигаций. Синтетическая бескупонная облигация – это инвестиционная стратегия, состоящая в приобретении и продаже купонных облигаций, генерирующая только один денежный поток в будущем. Размер этого будущего денежного потока соответствует номиналу бескупонной облигации. А размер денежного потока, генерируемого инвестиционной стратегией в настоящем, (взятый со знаком «плюс») соответствует текущей цене бескупонной облигации. Пример 11. Пусть на финансовом рынке имеются двухлетние пятипроцентные и пятнадцатипроцентные облигации с номинальными стоимостями 100 д.е. (и с купонным периодом – один год). Цены этих облигаций, соответственно, равны 91,41 д.е. и 108,93 д.е. Требуется построить однолетние и двухлетние синтетические бескупонные облигации с номинальной стоимостью 100 д.е., найти их цены и соответствующие чистые доходности. Решение. Пусть Очевидно, что инвестиционная стратегия генерирует в конце первого года денежный поток, равный Для однолетней синтетической бескупонной облигации
Решив эту систему уравнений, получим:
Теперь мы можем найти чистую доходность для одного года:
Для двухлетней синтетической бескупонной облигации
Решив эту систему уравнений, получим:
Найдем чистую доходность для двух лет:
Чистые доходности можно найти также из системы уравнений, в которой суммы платежей имеющихся на рынке облигаций, дисконтированных с помощью искомых чистых доходностей (соответствующих срокам платежей), приравниваются ценам облигаций. В условиях примера 11 такая система уравнений имеет вид
Решив эту систему уравнений, получим: Заметим, что значения чистых доходностей, полученные в результате решения системы уравнений, совпадают со значениями, полученными с помощью синтетических бескупонных облигаций. Записанную выше систему уравнений (относительно
Решив эту систему уравнений относительно коэффициентов дисконтирования
Получим: Используем найденные чистые доходности для дисконтирования платежей двухлетней десятипроцентной облигации (с купонным периодом – один год):
Покажем, что полученное значение Обозначим через
Решив эту систему уравнений, получим:
Итак, цена портфеля, состоящего из двухлетних пятипроцентных и пятнадцатипроцентных облигаций, имитирующего платежи данной купонной облигации, совпадает с найденным выше значением
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |