|
|||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Множество инвестиционных возможностей при наличии безрисковой доходностиПод безрисковым активом для заданного временнóго периода в теории инвестиционного портфеля понимается финансовый актив, доходность которого в течение заданного периода времени известна абсолютно точно в начале этого периода. К безрисковым активам относятся облигации (финансовые инструменты с фиксированными платежами), для платежей которых кредитный риск пренебрежимо мал, и срок погашения которых совпадает с концом заданного временнóго периода. Безрисковая доходность – это доходность безрискового актива (для заданного временнóго периода). Безрисковую доходность в финансовой литературе обычно обозначают через Поскольку безрисковая доходность (абсолютно точно) известна в начале периода, она детерминирована (т.е. не является случайной величиной). Отсюда, в частности, следует, что математическое ожидание безрисковой доходности совпадает с самой безрисковой доходностью ( Исследуем свойства комбинации безрискового актива с некоторым другим финансовым активом. (В качестве финансового актива может выступать портфель финансовых активов.) Обозначим безрисковый актив через Поскольку комбинация безрискового актива
Поскольку
Из (54) следует, что
Поскольку
Подставив (56) в (52), получим
Подставив (55) в (57), будем иметь
Заметим, что формула (58) – это уравнение прямой в координатной плоскости
Следовательно, множество инвестиционных возможностей комбинаций безрискового актива Обозначим через
Из (59) следует, что Прямая Определим, где именно на прямой Вначале рассмотрим случай, когда доли безрискового актива Из неотрицательности долей Рассмотрим случай, когда Объединив рассмотренные выше два случая, можно сделать вывод о том, что при
Множество инвестиционных возможностей комбинаций безрискового актива и всевозможных портфелей финансовых активов – это множество всех лучей
Очевидно, что множество инвестиционных возможностей комбинаций безрискового актива и всевозможных портфелей финансовых активов представляет собой угол, заключенный между самым верхним и самым нижним лучами, выходящими из точки
Эффективная граница множества инвестиционных возможностей комбинаций безрискового актива и портфелей финансовых активов – это самый верхний луч, выходящий из точки
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.) |