|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Задача оптимального финансирования проектаПредположим, что проект требует инвестиций
Инвестиции
Время 0 1 2 n -1 n
Для финансирования проекта фирма в начальный момент времени создает инвестиционный фонд, размером Момент времени, когда деньги вкладываются в финансовые инструменты вида i, обозначим через Задача фирмы состоит в том, чтобы минимизировать начальные вложения Построим математическую модель этой задачи. Количество денег, вкладываемых фирмой в финансовые инструменты вида i, обозначим через
В этой сумме ограничение
Кроме того, поскольку в течение каждого периода времени средневзвешенный уровень риска, связанный с вложением денег из инвестиционного фонда в финансовые инструменты, не должен превышать заданной величины
Здесь через
Приведем ограничение (25) к линейному виду. Подставив (26) в (25) после несложных алгебраических преобразований, получим:
Итак, математическая постановка задачи оптимального финансирования проекта – следующая: минимизировать целевую функцию (23) при ограничениях (24), (27) и условии неотрицательности переменных
Задача (28)-(31) – задача линейного программирования и легко решается на ПЭВМ. Для того, чтобы было удобнее вводить в ПЭВМ целевую функцию (28) и условия (29)-(30), можно следующим образом определить коэффициенты
С использованием коэффициентов
Пример 9. Промышленная организация заключила контракт со строительной компанией о строительстве нового цеха. В условиях контракта сказано, что промышленная организация должна выплатить строительной организации 60 д.е. в конце первого квартала и 100 д.е. в конце второго квартала. Для финансирования этого проекта промышленная организация создает фонд. (Причем промышленная организация вкладывает деньги в инвестиционный фонд только в начале первого квартала.) При этом существует возможность вкладывать деньги в бескупонные облигации сроком на один квартал в начале первого квартала и в начале второго квартала. Эффективная доходность таких вложений составляет 3%, а уровень риска – 1. Также можно вкладывать деньги в бескупонные облигации в начале первого квартала сроком на пол года. Эффективная доходность таких вложений – 10%, уровень риска – 3. Требуется минимизировать начальные вложения в инвестиционный фонд. При этом средневзвешенный уровень риска в течение каждого из двух кварталов не должен превышать 2. Решение. Примем в качестве единицы измерения времени один квартал. Тогда Поскольку в начале первого квартала деньги вкладываются в финансовые инструменты первого и второго видов, Таким образом, математическая модель задачи из примера 9 – следующая:
Подставив в (39)-(42) известные значения параметров, получим:
Решив эту задачу симплекс-методом, получим:
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.467 сек.) |