АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Определение 2. - независимые случайные величины

Читайте также:
  1. I. Определение основной и дополнительной зарплаты работников ведется с учетом рабочих, предусмотренных технологической картой.
  2. III. Определение оптимального уровня денежных средств.
  3. Аксиомы науки о безопасности жизнедеятельности. Определение и сущность.
  4. Анализ функциональной связи между затратами, объемом продаж и прибылью. Определение безубыточного объема продаж и зоны безопасности предприятия
  5. Быстрое определение направлений
  6. Быстрое определение расстояний
  7. Виды медицинской помощи – определение, место оказания, оптимальные сроки оказания различных видов, привлекаемые силы и средства
  8. Внешняя среда организации: значение, определение, взаимосвязь элементов.
  9. Возникновение и культурное самоопределение Санкт-Петербурга 1703-1725 гг
  10. Вопрос 31. Безработица, её определение. Причины и виды безработицы. Закон Оукена.
  11. Вопрос 4.3 Определение потребности в оборотном капитале
  12. Вопрос 6. Какое определение понятия «охрана труда» будет верным?

- независимые случайные величины

или, что то же самое

.

Совсем нетрудно заметить, что определения 1 и 2 равносильны.

 

Пусть на некотором вероятностном пространстве определена случайная величина

( , измеримая, т.е. ).

Рассмотрим множество случайных событий - множество всех прообразов измеримых подмножеств прямой; очевидно, что .

Заметим, что выполняются следующие соотношения:

1.

2. \

3. - измеримые подмножества прямой, тогда , где .

Из соотношений 1-3 следует, что - - алгебра.

Определение.

- это - алгебра, порожденная случайной величиной .

Примеры: , , - мера Лебега.

1) ;

2) (где ) .

3) .

...

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.025 сек.)