АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Пример. Найдем, какая часть общего числа молекул кислорода имеет при температуре 27ґС скорости, отличающиеся от наиболее вероятной не более

Читайте также:
  1. Демонстрационный пример.
  2. Конкретный пример. Внедрение тейлоризма в Венгрии
  3. Конкретный пример. Макгрегор Д. Человеческий аспект предприятия
  4. Конкретный пример. Памятка-правила
  5. Конкретный пример. Эксперимент на предприятии «Вольво»
  6. Пример.
  7. Пример.
  8. Пример.
  9. Пример.
  10. Пример.
  11. Пример.
  12. Пример.

Найдем, какая часть общего числа молекул кислорода имеет при температуре 27ґС скорости, отличающиеся от наиболее вероятной не более, чем на 1%; а также скорости в интервале 562 - 572 м/с.

Произведем необходимые вычисления. Чтобы ответить на первый вопрос задачи, учтем, что и=1 при v=vВЕР. Величина интервала du=0.02. Следовательно,

Вычислим наиболее вероятную скорость:

Найдем отношение v=562 м/с к vВЕР=395 м/с

Определим по кривой (см. рис. 3.4) значение функции f(u) при и=1.42. Получаем f(u) = 0.62. Ширина интервала Dv = 10 м/с (Du = 10/395 = 0.0253). Следовательно, доля молекул в этом интервале

Интересно отметить, что молекула кислорода проходит за секунду путь, равный в среднем 0.4 км. Но не нужно забывать о соударениях молекул. Из-за них молекула по прямой движется очень недолго, и ее путь представляет собой ломаную линию. Поэтому молекула, двигаясь с огромной скоростью по отдельным звеньям ломаной траектории, передвигается от слоя к слою газа со сравнительно небольшой скоростью.

Средняя арифметическая скорость. Знание функции распределения молекул по скоростям f(v) дает возможность найти среднее значение скорости, а также любой величины, являющейся функцией скорости, например квадрата скорости v2 или кинетической энергии молекулы mv2/2.


Средняя арифметическая скорость <v> - это отношение суммы абсолютных величин скоростей всех молекул в системе к числу этих молекул.

Разобьем интервал всех возможных значений скорости от 0 до бесконечности на малые интервалы Dvi. Каждому интервалу соответствует количество молекул

  (3.35)

Так как интервалы Dvi, малы, то можно приближенно считать скорости молекул данного интервала одинаковыми и равными vi. Сумма значений скоростей молекул интервала

  (3.36)

Сумма значений скоростей всех молекул

  (3.37)

Разделив эту сумму на число молекул, получим выражение для средней арифметической скорости

  (3.38)

Переходя от суммы к интегралу, получаем

  (3.39)

После вычислений определяем среднюю арифметическую скорость молекул

 
 
 

(3.40)

Среднеквадратичная скорость. Чтобы найти среднее значение произвольной функции L(v) скорости, нужно эту функцию умножить на функцию распределения и проинтегрировать по всем возможным значениям скорости:

 
 
 

(3.41)

В частности, при L(v)=v отсюда находится <v>.

Среднее значение квадрата скорости равно отношению суммы квадратов скоростей всех молекул системы к общему числу молекул. Таким образом,

 
 
 

(3.41)
Среднеквадратичная скорость -это корень квадратный из среднего квадрата скорости молекул  
       

Следует отметить, что характерные скорости отличаются друг от друга лишь численными множителями, причем

  (3.43)

а зависимость от Т и т0 (или m) у них одинаковая.

Через среднеквадратичную скорость выражается средняя кинетическая энергия поступательного движения молекул

  (3.44)

Этот результат находится в согласии с формулой (1.14) кинетической теории идеальных газов и с законом о равнораспределении энергии, который гласит, что на каждую степень свободы молекулы приходится энергия kBТ/2. Три степени свободы поступательного движения молекулы как раз соответствуют полученному здесь результату (3.44). В сущности, именно для того, чтобы получить такое соответствие, мы выбрали должным образом коэффициент a в (3.26).

Эксперимент по проверке распределения Максвелла. Необходимо еще раз подчеркнуть, что установленный Максвеллом закон распределения молекул по скоростям и все вытекающие из него следствия справедливы только для газа, находящегося в равновесии. Закон справедлив для любого числа молекул N, если только это число достаточно велико. Закон Максвелла - статистический, а законы статистики выполняются тем точнее, чем к большему числу одинаковых объектов они применяются. При малом числе объектов могут наблюдаться значительные отклонения от предсказанной статистики - флуктуации.

Экспериментальное определение распределения скоростей молекул было осуществлено впервые О. Штерном в 1920 г. Исследовалось распределение по скоростям одноатомных молекул паров металлов (Ag или Pt), из которых была изготовлена нить, расположенная на оси двух цилиндров. Нить нагревалась электрическим током, и металл испарялся (см. рис.).


Схема опыта Штерна: 1 - вид установки сбоку; 2 - вид установки сверху

Молекулы, прошедшие через щель во внутреннем цилиндре, летели по прямой и оседали на стенке холодного внешнего цилиндра. Если привести всю установку во вращение (щель все время против точки В0), то молекулы, обладающие большой скоростью v, попадут в некоторую точку вблизи В0, а более медленные затратят на путь больше времени и попадут в точки, отстоящие дальше от В0. Следует обратить внимание, что вылетающие молекулы движутся по прямой, они не участвуют во вращательном движении. Поскольку молекулы в зависимости от скорости попадают в разные точки внешнего цилиндра, то исследуя толщину слоя металла, осевшего на его стенку, можно составить представление о распределении молекул по скоростям.
Найдем распределение молекул по расстояниям S от точки В0 до места их попадания на стенку цилиндра. Если R и r - радиусы большого и малого цилиндров, соответственно (см. рис.), то время полета от щели до стенки цилиндра

За это время цилиндр повернется на угол

где w - угловая скорость вращения установки. Соответственно, точка попадания будет смещена относительно В0 на расстояние

Подставляя сюда время полета, получаем связь скорости молекулы с расстоянием S:

Подставляя в свою очередь полученное выражение в распределение Максвелла и учитывая, что

находим распределение молекул по расстояниям S:

(мы опускаем выражение для нормировочной постоянной С).
Опыты Штерна подтвердили справедливость закона, установленного Максвеллом.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)