АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнение Ван-дер-Ваальса. Уравнение Клапейрона-Менделеева следует из молекулярно-кинетической теории в предположении идеальности газа

Читайте также:
  1. V2: Волны. Уравнение волны
  2. V2: Уравнение Шредингера
  3. Адиабатический процесс. Уравнение адиабаты (Пуассона). Коэффициент Пуассона.
  4. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЕ ТЕПЛОВОГО БАЛАНСА
  5. В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  6. В простом случае обычное дифференциальное уравнение имеет вид
  7. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона
  8. Волна вероятности. Уравнение Шредингера
  9. Волновая функция.Уравнение Шредингера
  10. Волновое уравнение для упругих волн и его общее решение.
  11. Волновое уравнение для электромагнитных волн
  12. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.

Уравнение Клапейрона-Менделеева следует из молекулярно-кинетической теории в предположении идеальности газа. Если мы хотим описывать поведение реальных систем, надо учесть взаимодействие молекул между собой. Точный учет межмолекулярных сил - задача чрезвычайно трудная. Поэтому было предложено несколько модификаций уравнения состояния идеального газа, которые могли бы учесть основные особенности реальных систем. Наиболее удачной попыткой стало уравнение Ван-дер-Ваальса, при получении которого вносились поправки в уравнение состояния идеального газа

В подходе Ван-дер-Ваальса, во-первых, принимается во внимание, что молекулы имеют конечные размеры. Если обозначить собственный объем всех молекул в моле вещества буквой b, то для движения молекул остается свободный объем

и именно он должен фигурировать в уравнении состояния. Во-вторых, учитывается, что молекула, подлетающая к стенке сосуда, «чувствует» притяжение других молекул, которое уравновешивалось, когда молекула была внутри сосуда. Дополнительная сила, направленная внутрь сосуда, эквивалентна дополнительному давлению pi, (его называют внутренним давлением газа). Поэтому вместо давления р газа на стенки сосуда уравнение состояния должно содержать сумму р+рi.

Как зависит внутреннее давление pi от параметров системы? Сила, действующая на каждую молекулу, пропорциональна концентрации п молекул в системе. Число подлетающих к стенке молекул также пропорционально п, и потому внутреннее давление пропорционально квадрату концентрации частиц:

Обозначая коэффициент пропорциональности буквой а, приходим к уравнению Ван-дер-Ваальса

 
 
 

(2.35)

Для одного моля вещества это уравнение упрощается:

  (2.36)

Рассмотрим вид изотерм газа Ван-дер-Ваальса на (р,V)-диаграмме. Они описываются функцией

  (2.37)

При достаточно высоких температурах и больших объемах введенными поправками можно пренебречь, и вид изотерм получится обычным. При понижении температуры вид изотерм все более искажается и при некотором критическом значении температуры Тс данная изотерма приобретает точку перегиба (критическую точку) с координатами (рс, Vc), в которой равны нулю первая и вторая производные давления по объему. При дальнейшем понижении температуры точка перегиба превращается в минимум и максимум функции p(V).

Найдем сначала значения параметров, соответствующих критической точке. Берем первую и вторую производные функции (2.37) и приравниваем их нулю:

  (2.38)

Решение этой пары уравнений даст нам критические значения Tc и Vc. Находя из первого уравнения значение

  (2.39)

подставляем его во второе уравнение, откуда тогда следует

или

Получаем сначала значение молярного критического объема

  (2.40)

Подставляя его в уравнение (2.39), находим критическую температуру

  (2.41)

Наконец, подставляя найденные значения Тс, Vc в уравнение (2.37), находим критическое давление

  (2.42)

Эти критические значения получены для одного моля вещества. Чтобы найти их для произвольного числа молей, заметим, что при переходе от уравнения (2.36) к (2.35) надо произвести масштабное преобразование

Выполняя то же преобразование в формулах для критических значений термодинамических параметров, убеждаемся, что критические температура и давление не изменяются, а объем преобразуется естественным образом:

  (2.43)

Значения критических параметров берутся из данных эксперимента. Отметим, что газовая постоянная R также может быть выражена через критические параметры:

  (2.44)

Для каждого реального газа следует вычислять свою индивидуальную газовую постоянную R, которая будет отличаться от универсальной газовой постоянной NAkB идеального газа. Этому не следует удивляться, учитывая феноменологический приближенный характер уравнения Ван-дер-Ваальса. Значения критических параметров некоторых веществ и их газовая постоянная приведены в табл. 2.

Таблица 2.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)