|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Системи звичайних диференційних рівняньРозглянемо систему Нехай загальне рішення системи. Щоб виділити з загального рішення розв'язок, який задовольняє початковим даним , треба знайти сі з рівнянь . У випадку, коли виконані умови теореми існування і єдиності розв’язку, вказані рівняння розв’язувані відносно сі та загальне рішення може бути записано у вигляді (і=1,…,п) Означення. Співвідношення називається інтегралом системи якщо функція φ відрізняється від постійної і при підстановці в неї будь якого розв’язку уі=ψі(х) (і=1,…,п) системи вонаперетворюється в постійну. Припустимо, що ми маємо декілька інтегралів системи , і=1,…,k (k – число інтегралів ). Якщо взяти довільну функцію F(φ1,…,φк), то вона перетвориться в const при підстановці замість у1,…,уп будь якого розв’язку системи, тобто ми отримаємо інтеграл системи F(φ1,…,φn)=c. Нехай ми маємо п інтегралів і=1,…,п. Вони називаються незалежними, якщо ці рівності розв’язувані відносно п змінних (умовно у1,…,уп). Таким чином ми отримуємо загальній розв’язок системи. Запишемо ситуацію в більш симетричному вигляді. Вихідну систему можна записати у вигляді пропорціонального ряду. Помножимо всі рівності на пропорційний множник (у першому співвідношенні у знаменнику зникне 1) та змінюючи, для симетрії, позначення змінних на х і будемо мати , Хі – функції від х1,…,хп+1 Якщо (і=1,…,п) система п незалежних інтегралів системи, то з них можна отримати загальний розв’язок системи, тобто розв’язати систему – значить знайти п незалежних інтегралів. Приклад. , , тобто або , у=с1х. або , інтегруючи отримаємо або (замінивши ) Ми отримали два незалежний інтеграла системи , отже система розв’язана. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |