АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Загальний вигляд рішення лінійного неоднорідного рівняння

Читайте также:
  1. А. Рішення на застосування одного з перших трьох режимів радіаційного захисту
  2. Б. Рішення на застосування четвертого або п'ятого режимів радіаційного захисту
  3. Визначте загальний смисл тексту, виділіть його смислові частини, ключові слова, терміни, морфологічні і синтаксичні засоби.
  4. Вирішення алгебричних рівнянь графічним методом за допомогою Simulink
  5. Вирішення диференційних рівнянь символічній формі
  6. Вирішення систем алгебричних рівнянь у символічній формі
  7. Вирішення систем диференційних рівнянь у символічній формі
  8. ВКАЗІВКИ ДО ВИРІШЕННЯ ЗАДАЧІ.
  9. Встановіть відношення між поняттями і зобразіть їх у вигляді колових схем.
  10. Дані для рішення завдання № 1
  11. ДЛЯ РІШЕННЯ ДЕЯКИХ ЗАДАЧ СТАТИСТИКИ
  12. Екологчні проблеми в Україні і шляхи їх вирішення

Розглянемо лінійне неоднорідне рівняння y +p (x) y +…+p (x)y=f(x), або Ly=f(x). Враховуючи лінійність рівняння легко довести, що якщо у є рішенням неоднорідного рівняння, а y – однорідного, то функція у +y – рішення неоднорідного рівняння. Дійсно

L (у +y ) =Lу +Ly = f(x) +0.

Теорема. Нехай дане лінійне неоднорідне рівняння n – го порядку й функції f(x), p (x),…,p (x) неперервні на [a;b]. Якщо у …y –фундаментальна система рішень, відповідного лінійного однорідного рівняння, у - будь-яке рішення неоднорідного рівняння, тоді загальне рішення неоднорідного рівняння має вигляд у= у+ с у +…+c у , де довільні константи.

Доведення. Відмітимо, що згідно з попереднім твердженням у= у+ с у +…+c у є рішення рівняння. Покажемо, що рішення будь-якої задачі Коші можна отримати з рішення у= у+ с у +…+c у вибираючи відповідним чином константи. Розглянемо довільні початкові умови в .

Підставляючи замість у його значення отримаємо систему рівнянь відносно

Визначник даної системи – визначник Вронского W(х )≠0 (оскільки виконуються умови теореми 4, лекції 5). Таким чином, система має єдине рішення, підставляючи замість довільних констант рішення системи у функцію у, одержимо шукане рішення задачі Коші, що доводить теорему.

Приклад. y′′+ y′+y=х+1.

Не складно перевірити, що =x рішення рівняння. Знайдемо фундаментальну систему рішень рівняння y′′+ y′+y=0. Відповідне характеристичне рівняння має вид k +k+1=0, отже k = k = . Таким чином фундаментальна система рішень є , отже загальне рішення рівняння має вид y=x+c +c .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)