Постановка крайових задач
Розглянемо стаціонарне теплове поле. Розподіл температури буде задовольняти рівнянню (враховуючи, що ) або (рівняння Лапласа)
Задача про стаціонарний розподіл тепла всередині тіла Т формулюється наступним чином:
Знайти функцію що задовольняє всередині Т рівняння і граничній умові, одного з наступних видів:
1. на поверхні (перша крайова задача),
2. на - похідна у напрямку нормалі п до поверхні (друга крайова задача),
3. на (третя крайова задача).
Першу крайову задачу називають задачею Дирихлє, а другу – задачею Неймана.
Крім того, якщо розв’язок шукається в внутрішній (в зовнішній) по відношенню до частини, то відповідно задачу називають внутрішньою (зовнішньою) крайовою задачею.
Розглянемо задачу на площині, тобто для двох змінних. Відмітимо, що функції і (двох змінних), для яких виконується умова Коші-Рімана (що називаються гармонійними) будуть задовольняти однорідному рівнянню.
Гармонійна функція, задовольняє принципу міні-максимуму (див. теорію аналітичних функцій), таким чином для першої крайової задачі буде виконуватись теорема єдиності, як це ми доводили раніше. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | Поиск по сайту:
|