|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Лінійні однорідні рівняння з постійними коефіцієнтамиЗадача знаходження фундаментальної системи рішень, а отже й загального рішення, спрощується у випадку рівняння з постійними коефіцієнтами. Означення. Рівняння виду y +a y +…+a y=0, де а ,…,а – довільні константи, називається лінійним однорідним рівнянням з постійними коефіцієнтами. Рішення рівняння шукають у вигляді у= . Підставляючи у= у рівняння отримаємо, що k задовольняє рівнянню kⁿ+a k +…+a =0. Означення. Рівняння kⁿ+a k +…+a =0 називають характеристичним рівнянням для даного диференціального рівняння. Існує декілька випадків відносно розв’язка характеристичного рівняння. 1. Характеристичне рівняння має n різних дійсних коренів . Розглянемо функції у = ,…, у = усі вони є рішеннями даного диференціального рівняння і лінійно незалежні, оскільки . Отже у = ,…, у = - фундаментальна система рішень і у=с +…+с – загальне рішення лінійного однорідного диференціального рівняння з постійними коефіцієнтами. 2. Припустимо, що якийсь корінь ki дійсний, але має кратність p. Тоді – лінійно незалежна система функцій, які також являються рішеннями вихідного рівняння, що не важко перевірити підставляючи їх у рівняння, враховуючи кратність ki. Загальний розв’язок рівняння будується аналогічно 1 з урахуванням вище сказаного. 3. Припустимо, щохарактеристичне рівняння має комплексний корінь k =α+βi, тоді спряжене число k =α-βi теж корінь характеристичного рівняння. Цім кореням відповідають дві функції , в фундаментальній системі розв’язків. Скористувавшись формулами Ейлера ці функції можна замінити на дійснозначні. Оскільки = (cosβx+isinβx) , = (cosβx-isinβx) , то , , або у = cosβx , у =sinβx – рішення рівняння і лінійно незалежні. Загальний розв’язок будується аналогічно 1. 4. Якщо комплексний корінь k =α+βi має кратність p, спряжений корінь k =α-βi теж має кратність p. Тоді аналогічно випадкам 2 і 3 цім кореням відповідає система лінійно незалежних рішень рівняння: cosβx , xcosβx ,…, cosβx , sinβx ,xsinβx ,…, sinβx , за допомогою яких і будується загальне рішення. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |