|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Огибаюча сімейства кривих. Рівняння КлероОзначення. Нехай F(x,y,c)=0 сімейство кривих. Тоді L називається огибаючою цього сімейства якщо в кожній своїй точці вона дотикається лінії сімейства і кожна крива сімейства дотикається до L. Якщо F(x,y,c)=0 є загальним рішенням диференціального рівняння , то тоді огибаюча сімейства теж є рішенням даного рівняння. Оскільки дотична до огибаючої у довільній точці збігається з дотичною, проведеною до кривої даного сімейства, що дотикається огибаючої у даній точці, то дотична до огибаючої збігається з напрямком, що задається диференціальним рівнянням у даній точці. Отже огибаюча є інтегральною кривою, тобто рішенням. Оскільки через будь-яку точку огибаючої проходить два рішення (огибаюча та деяке рішення з сімейства), то огибаюча – особливе рішення. Якщо F(x,y,c)=0 сімейство, то огибаючу його визначають з системи: . Приклад. Для рівняння загальне рішення має вигляд y=x+ . Знайдемо огибаючу до загального рішення з системи: , , отже у=х. у=х - огибаюча загального рішення рівняння, отже є особливим рішенням. Означення. Рівняння виду y=xy′+ (у′) називається рівнянням Клеро. Знайдемо загальний розв’язок та особливий розв’язок рівняння Клеро. Розглянемо заміну у′=p, тоді y=xp+ (p) і у′=p+xp′+p′ ′(p), враховуючи заміну отримаємо p=p+xp′+p′ ′(p) або p′ (x+ ′ (p)) =0. Остання рівність виконується у двох випадках: 1) p′=0, тобто p=c і загальний розв’язок має вид y=cx+ (c); 2) , тобто рішення є огибаюча загального розв’язка , яку знаходимо з системи . Приклад. Знайти загальне та особливе рішення рівняння y=xy′+ (у′) . Загальний розв’язок має вигляд y=cx+ c . Огибаючу знаходимо з системи . Отже c= і y= + або y= . Самостійно розглянути рівняння Лагранжа. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |