АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение систем линейных уравнений матричным способом

Читайте также:
  1. A) к любой экономической системе
  2. A) прогрессивная система налогообложения.
  3. C) Систематическими
  4. CASE-технология создания информационных систем
  5. ERP и CRM система OpenERP
  6. HMI/SCADA – создание графического интерфейса в SCADА-системе Trace Mode 6 (часть 1).
  7. I СИСТЕМА, ИСТОЧНИКИ, ИСТОРИЧЕСКАЯ ТРАДИЦИЯ РИМСКОГО ПРАВА
  8. I. Основні риси політичної системи України
  9. I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ
  10. I. Решение логических задач средствами алгебры логики
  11. I. Суспільство як соціальна система.
  12. I. Формирование системы военной психологии в России.

Пусть имеется система линейных уравнений:

Введем матрицы: .

Тогда исходную систему линейных уравнений можно записать следующим образом: АХ = В; отсюда матричное решение будет иметь вид: Х = А-1В.

Примечание. Матричным способом можно решать систему линейных уравнений лишь в том случае, когда матрица из коэффициентов при неизвестных будет обратимой.

П р и м е р. Решить матричным способом систему линейных уравнений:

Решение:

находим определитель D:

Поскольку D¹0, следовательно матрица из коэффициентов при неизвестных будет обратимой и, следовательно, систему линейных уравнений можно решить матричным способом.

.

Находим алгебраические дополнения элементов матрицы А.

Найдем обратную матрицу А-1:

.

Найдем решение системы линейных уравнений:

Таким образом, . Поскольку матрица , получим следующее решение: х1 = 1; х2 = 3; х3 = 0.

Ответ: х1 = 1; х2 = 3; х3 = 0.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)