АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифференцирующее звено

Читайте также:
  1. Дифференцирующее звено
  2. Инерционное звено.
  3. Интегрирующее (идеальное) звено.
  4. Интегрирующее звено.
  5. Колебательное звено.
  6. Усилительное звено.
  7. Форсирующее (идеальное) звено.

 

Сначала рассмотрим идеальное дифференцирующее звено. Дифференциальное уравнение этого звена устанавливает пропорциональность выходной величины скорости изменения входной величины:

. (3.5.)

Операторное уравнение: Y (p) = kp X (p).

Передаточная функция

где k – коэффициент усиления.

Комплексная частотная характеристика

.

Действительная часть U (w) = 0, мнимая часть V (w) = kw.

Амплитудная частотная характеристика

.

Амплитуда растет линейно с частотой.

Фазовый угол для всех частот 90°, что означает постоянное опережение по фазе при любой частоте.

Переходная функция – в ответ на единичное ступенчатое воздействие – имеет вид:

.

То есть, на выходе появляется единичный импульс, усиленный в k раз.

Осуществить практически идеальное дифференцирующее звено невозможно. Но реализуемы математические модели, в которых присутствует дифференцирующая составляющая dx / dt. Так, если записать в правой части инерционного звена вместо усилительного дифференцирующее воздействие, получается математическая модель, которую называют «реальное дифференцирующее звено».

. (3.6)

Операторное уравнение: (Tp + 1) Y (p) = kpX (p).

 

Передаточная функция

.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)