|
||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Прямые показатели качества
Основной характеристикой качества САР является точность, которая оценивается ошибкой регулирования . (6.1) Пример появления ошибки регулирования в системе автоматической стабилизации показан схемой на рис. 6.1. Система должна обеспечивать равенство управляемой величины y (t) задающему воздействию u (t) при действии возмущения z (t). Регулятор обозначен передаточной функцией W 1(p), объект управления – передаточной функцией W 2(p).
z (t)
u (t) e (t) x (t) y (t) W 1 W 2
Рис. 6.1. Замкнутая система автоматического регулирования.
Нетрудно убедиться, что ошибка регулирования зависит от задающего воздействия и от возмущения. Для этого, методом обратного движения построим операторное уравнение . Запишем уравнение по Лапласу ошибки E (p) = U (p) – Y (p), учтем формулу передаточной функции по ошибке и после простых алгебраических действий получим: . Первое слагаемое делает вклад в ошибку регулирования от задающего воздействия, второе – от возмущения. Передаточные функции представляют свойства системы. Введем в формулу (6.1) условие единичного ступенчатого воздействия, u (t) = 1(t). Тогда переходной функцией будет h (t). Ошибка получает вид . (6.2) Формула (6.2) показывает, что ошибка отличается от переходной функции на постоянную величину. Поэтому, оценивая качество, в формулах можно использовать непосредственно переходную функцию. При импульсном воздействии ошибка регулирования будет отличаться от таковой при единичном ступенчатом воздействии. С течением времени h (t) стремится к установившемуся значению h (∞), а ошибка регулирования – к некоторому постоянному значению . Это значение ошибки называют статической ошибкой. Статическая ошибка есть рассогласование между установившемся значением регулируемой величины и ее заданным значением: . Смысл статической ошибки заключается в следующем. Система исполняет регулирующую команду не до конца: когда достигается установившееся состояние, остается некоторое остаточное отклонение регулируемого параметра от заданного значения. Остаточное отклонение зависит от конструктивных особенностей САР и от величины управляющего воздействия. Разность (6.3) называют динамической ошибкой. Систему автоматического регулирования с остаточной ошибкой в установившемся режиме называют статической системой. Наряду со статическими, есть системы, у которых регулируемый параметр по достижении равновесия принимает точно заданное значение. Систему автоматического регулирования, которая исполняет регулирующую команду точно, называют астатической. Подводя итог сказанному, можно констатировать: - показатель качества «точность» оценивается двумя ошибками: статической и динамической; - регулирование статической системы происходит с ошибкой. - астатическая система регулируется без ошибки. Быстродействие. Оценивается временем регулирования tp, рис. 6.2. Это промежуток времени, по истечении которого отклонение выходной величины от установившегося значения h (¥) не превышает некоторой заранее заданной величины Δ. Последняя носит название «поры нечувствительности».Обычно назначают Δ в пределах (0,01 … 0,05) h (∞).
h (t)
h max
2 Δ
h (∞)
0 t н t м t p
Рис. 6.2. Переходная функция
Наряду с tp для колебательных процессов используют две другие оценки быстродействия. Одна из них – время t н от начала процесса до первого пересечения кривой h (t) с прямой h = у (¥), рис. 6.2. Время t н называют временем нарастания переходного процесса. Другая – время t м достижения первого максимума, рис. 6.2.
Перерегулирование. Это максимальное отклонение регулируемой величины от установившегося значения h (¥). Определяется в процентах: (6.4) hmax – величина h (t) в момент времени tм, рис. 6.2. Чем больше g, тем более система склонна к колебаниям. Число колебаний регулируемой параметра h (t) за время регулирования tp. Период колебаний определяется как 2p/ w. Частное от деления времени регулирования на период колебаний есть число колебаний . (6.4) Число колебаний регулируемой величины оценивает показатель переходного процесса, называемый «колебательность». Высокая колебательность отвечает большой амплитуде или частоте колебаний, медленному затуханию. В этом случае величина ν тоже большая. Низкой колебательности отвечает малая величина ν. Специфические особенности системы регулирования могут потребовать дополнительные оценки качества. Например, точность воспроизведения входного сигнала, величина ошибки от возмущения и др.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |