|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Если система замкнутая, ее передаточная функция. (5.4) Характеристический полином есть D (p) + B (p). Устойчивость замкнутой системы определяется по характеристическому полиному D (p) + B (p). То есть, в нем содержится информация об устойчивости замкнутой системы. Отношение передаточных функций (2.6) и (5.4) есть отношение характеристического полинома замкнутой системы к характеристическому полиному разомкнутой системы: . Значит, содержит в себе информацию об устойчивости как замкнутой, так и разомкнутой системы. Устойчивость замкнутой системы связана с устойчивостью разомкнутой. Поскольку , (5.10) открываются возможности судить об устойчивости замкнутой системы по передаточной функции разомкнутой системы.
Запишем выражение (5.10) в частотной форме, полагая p = jw: 1 + W (jw). W (jw) есть комплексная частотная характеристика разомкнутой системы. Эту характеристику можно изобразить графически на комплексной плоскости, задавая w от 0 до ∞ и рассчитывая частотные характеристики: действительную U(w) и мнимую V(w). Получается годограф разомкнутой системы. Его вид говорит об устойчивости или неустойчивости замкнутой системы. Допустим, разомкнутая система устойчива. Тогда, если годограф устойчивой разомкнутой системы при изменении w от 0 до ∞ не охватывает точку -1 на оси абсцисс, то замкнутая система будет устойчивой. Охватывает – замкнутая система неустойчивая. Примеры годографов, соответствующих устойчивой и неустойчивой замкнутой системам, представлены на рис. 5.14 и 5.15.
V V
-1 -1
Рис. 5.14 Рис. 5.15
V V
-1 -1
Рис. 5.16 Рис. 5.17
V V
-1 -1
Рис. 5.18 Рис. 5.19
Замкнутая система может быть устойчивой и тогда, когда разомкнутая система неустойчива. Критерий Найквиста для неустойчивой разомкнутой системы: если годограф неустойчивой разомкнутой системы при изменении w от 0 до ∞ охватывает точку -1 на оси абсцисс в положительном направлении m / 2 раз, где m – число корней характеристического уравнения разомкнутой системы с положительной действительной частью, то замкнутая система будет устойчивой. (положительной считается движение конца вектора против часовой стрелки). Примеры годографов, соответствующих устойчивой и неустойчивой замкнутым системам во втором случае, представлены на рис. 5.16 и 5.17 для m = 2. Если разомкнутая система имеет передаточную функцию, содержащую в знаменателе множителем комплексную переменную р, , то комплексная частотная характеристика будет иметь неопределенность при w = 0. Амплитуда становиться бесконечной. Годограф получается с бесконечной ветвью. Но если годограф мысленно дополнить зеркально отраженной ветвью и провести полуокружность бесконечно большого радиуса так, чтобы она пересекала положительную часть оси абсцисс, то такой прием позволяет использовать первую формулировку критерия Найквиста. То есть, если точка -1 на оси абсцисс лежит за пределами замкнутой кривой – замкнутая система устойчивая. Если охватывается кривой – неустойчивая. Примеры таких годографов приведены на рис. 5.18 и 5.19. Подведем итог сказанному в виде таблицы 1, с использованием соответствующих аббревиатур.
Таблица 1
РСУ. Тогда ЗСУ, если -1 вне. ЗСН, если -1 внутри.
РСН. Тогда ЗСУ, если -1 вне. ЗСН, если -1 внутри.
РС астатическая. Тогда ЗСУ, если -1 вне. ЗСН, если -1 внутри.
Замкнутая система будет находиться на границе устойчивости, если годограф разомкнутой системы проходит через точку -1 оси абсцисс. Аналитически это условие можно записать в виде 1 + W (jw) = 0. Кривые Найквиста наглядно показывают влияние коэффициента усиления на устойчивость системы. Для передаточной функции, в которой коэффициент усиления увеличивают, размеры и положение кривой Найквиста меняются относительно точки с координатой (-1,0). Допустим, имеется кривая 1, отвечающая границе устойчивости, рис.5.20. Предельный коэффициент усиления k = k *. Кривая 2, для которой k < k *, отвечает устойчивой системе, кривая 3, для которой k > k * - неустойчивой. Увеличение коэффициента усиления вызывает смещение влево точки пересечения кривой 2 с отрицательной частью действительной оси. То есть, может перевести систему из устойчивого состояния в неустойчивое.
Рис. 5.20. Значение коэффициентов усиления: 1 - k = k *, 2 - k < k *, 3 – k > k *.
Система, имеющая годограф, изображенный на рис. 5.20, с увеличением коэффициента усиления способна реализовать два состояния: «устойчивость – неустойчивость». Для более сложных кривых число состояний может увеличиваться. Например, у кривой с одним максимумом в отрицательной полуплоскости (рис. 5.21) по мере
Рис. 5.21 Рис. 5.22
увеличения коэффициента усиления устойчивое состояние сменяется неустойчивым, а затем снова устойчивым. У кривой с двумя максимумами (рис.5.22), при увеличении коэффициента усиления, реализуются состояния: «устойчивость – неустойчивость – устойчивость – неустойчивость». Система может устойчиво работать в двух разных интервалах изменения коэффициента усиления. Это свойство не обнаруживается применением критерия Гурвица или Михайлова. Коэффициент усиления на границе устойчивости рассчитывают, приравнивая комплексную частотную характеристику минус единице: W (jw) = -1. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |