АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Проводящие пути и афферентные связи коры мозжечка

Читайте также:
  1. III. Реклама и связи с общественностью в коммерческой сфере.
  2. Анализ взаимосвязи двух временных рядов
  3. Анализ взаимосвязи между обобщающими, частными показателями экономической эффективности деятельности предприятия и эффективностью каждого научно-технического мероприятия
  4. Анализ функциональной связи между затратами, объемом продаж и прибылью. Определение безубыточного объема продаж и зоны безопасности предприятия
  5. Анализ функциональной связи между издержками и объемом производства продукции
  6. Аппаратура линии связи: аппаратура передачи данных, оконечное оборудование, промежуточная аппаратура.
  7. АППАРАТУРА ЛИНИЙ СВЯЗИ
  8. Банковская система и ее элементы взаимосвязи
  9. БЕСПРОВОДНАЯ ЛИНИЯ СВЯЗИ
  10. БИОЦЕНОЗ И ХАРАКТЕРНЫЕ ДЛЯ НЕГО ВЗАИМОСВЯЗИ
  11. Биоэнергетические упражнения по установлению связи с землей
  12. В прошлом году российские операторы сотовой связи получили лицензии на предоставление услуг связи третьего поколения. Но это- лишь первый шаг к построению мобильной сети 3G.

 

Восходящие волокна направляются к мозжечку от спинного мозга и стволовых отделов в составе парных вестибуло-мозжечкового, дорзального и вентрального спинномозжечковых, оливо-мозжечкового, ретикуло-мозжечкового, и тройнично-мозжечкового трактов (рис. 7.37).

 

Рис. 7.37. Афферентные связи мозжечка с передним (А), средним (Б), задним (В), продолговатым (Г) и спинным (Д) мозгом:

1лобная кора: 2теменная кора; 3височная кора: 4затылочная кора: 5лонно-мостовые волокна: 6височно-теменно-затылочно-мостовые волокна: 7червь: 8полушарие мозжечка; 9клочково-узелковая доля; 10нижняя ножка мозжечка; 11средняя ножка мозжечка; 12латеральные ядра моста; 13медиальные ядра моста; 14оливные ядра; 15дуговое ядро; 16задний спинно-мозжечковый тракт; 17передний спинно-мозжечковый тракт

 

Большая часть этих проводящих путей обеспечивает поступление к мозжечку проприоцептивных сигналов. Вестибуло-мозжечковая система служит для проведения вестибулярной информации. Кроме того, в кору мозжечка приходят тактильные и экстроцептивные сигналы.

Передний спинно-мозжечковый тракт (tr. spino-cerebellaris anterior Coversi) поворачивает у границы моста со средним мозгом в дорзальном направлении. Затем он проходит через латеральную зону верхней ножки мозжечка в передний мозговой парус, откуда распределяется по мозжечку. Большинство волокон этого тракта заканчивается на клетках гранулярного слоя коры червя – в его центральной дольке и вершинке. При этом терминали волокон от нижних сегментов спинного мозга располагаются впереди от концевых ветвлений волокон, берущих начало в верхних сегментах. Этот тракт обслуживает проведение проприоцептивных сигналов от туловища и конечностей в большей мере от нижних участков контралатеральной половины тела.

Через эти тракты может осуществляться и передача тактильных сигналов. Дополнительно информация от области головы, особенно лица, может поступать по тройнично-мозжечковым волокнам, которые начинаются от главного и мезенцефалического сенсорных ядер тройничного нерва. Считается, что эти волокна проходят в мозжечок по латеральному краю его верхней ножки.

Соматосенсорная проекция в коре мозжечка имеет топическую организацию в передней доле. Нижние участки тела представлены впереди – в языке, в области головы и шеи – сзади – в вершине и отчасти в скате. Взадней доле коры мозжечка также имеется представительство всей поверхности ипсилатеральной половины тела.

Кроме вестибулярной, проприоцептивной и соматосенсорной афферентации мозжечок получает экстероцептивную информацию. Зоны зрительной и слуховой проекций ограничены в основном неоцеребеллярными участками. Переключение соответствующих сигналов на кору мозжечка обеспечивается за счет непрямых связей с сенсорными системами через ретикулярные структуры ствола мозга, четверохолмие и специфические анализаторные области коры большого мозга.

Как показано в экспериментах на отдельных представителях млекопитающих, ретикуло-мозжечковые волокна отходят как от латеральных так и от медиальных ядер ретикулярной формации ствола. Маленькие скопления афферентных волокон начинаются от латерального и парамедиального ретикулярных ядер, а также от латеральной области покрышки моста. По-видимому в мозжечковой коре существует проекция обонятельного и интероцептивного анализаторов. Кора мозжечка, благодаря конвергенции влияний, поступающих от различных сенсорных систем, является важным центральным образованием, необходимым для постоянного сравнения и оценки информации, связанной с оптимальным распределением тонуса мускулатуры, координацией произвольных движений, поддержанием равновесия и позы.

 

[Ядра мозжечка]

 

Афферентные волокна, подходящие к зубчатому ядру, образуют вокруг него капсулу. Они представлены аксонами грушевидных клеток, находящихся в большей части передней доля и неоцеребеллярной части задней доли,

В самом зубчатом ядре можно различить большие мультиполярные и мелкие веретенообразные клетки. Мультиполярные клетки имеют сильно ветвящиеся дендриты, которые получают синапсы от аксонов мелких нейронов. Тела мультиполярных клеток располагаются характерными рядами. Их диаметр равен 30–40 мм. В дорзомедиальной части ядра они более крупные, но располагаются менее упорядочение. Миелинизированные аксоны мультиполярных клеток выходят через ворота зубчатого ядра и образуют основную часть верхней ножки мозжечка. Большая группа восходящих волокон, которые отходят, главным образом, от вентральной и латеральной зон ядра, проходит в дорзальной части верхней ножки, перекрещивается и заканчивается в красном ядре, вентролатеральном таламическом ядре и в бледном шаре в системе базальных ядер. Меньшая нисходящая группа волокон начинается преимущественно в промежуточной и дорзальной зонах ядра. Покинув верхние ножки мозжечка, эти волокна следуют по медиальному продольному пучку к ретикулярным и покрышечным ядрам ствола мозга, в том числе к нижнему оливному ядру. Частично они проходят к шейным сегментам спинного мозга.

Пробковидное ядро образовано группами мультиполярных, в основном, крупных нейронов. Они получают синаптические окончания от аксонов грушевидных клеток старой коры полушарий мозжечка. Эфферентные волокна от этого ядра направляются через верхние ножки к контралатеральной половине среднего мозга, и возможно, отчасти, к базальным ядрам.

Шаровидное ядро состоит из больших и мелких нейронов, скапливающихся в группы. Они получают окончания аксонов грушевидных клеток, расположенных, главным образом, в промежуточной зоне, в части червя и меньше – в латеральной зоне.

Афферентные и эфферентные связи его такие же, как и у пробковидного ядра. Поскольку в филогенезе они также развивались из одного ядра, их нередко объединяют (nucl. interpositus). Они получают волокна от медиальной части нового мозжечка и посылают часть своих аксонов в старые отделы мозжечка.

Шатровое ядро получает афференты в первую очередь от древнего мозжечка (клочково-узелковой доли), а также от всей коры червя и полушарных областей старого мозжечка, связанных со спинно-мозжечковыми трактами. Кроме того, в это ядро вступают прямые афференты от вестибулярных ядер и часть первичных вестибулярных волокон в составе нижних ножек.

Аксоны крупных клеток этого ядра, занимающих его латеральную зону, большей частью перекрещиваются и направляются в составе нижних ножек к продолговатому мозгу. Основная масса этих волокон заканчивается в вестибулярных ядрах – большая часть в латеральном ядре и меньшая – в нижнем ядре. Некоторые волокна образуют синапсы в ретикулярной формации, чаще всего в ядре нижней оливы.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)