|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Долгосрочные ссудыОчевидно, что способ погашения долгосрочной задолженности оказывает заметное влияние на эффективность соответствующей финансовой операции для кредитора. В данном параграфе кратко рассмотрены методы оценивания ПД долгосрочных ссуд для двух случаев: 1) когда проценты погашаются последовательными платежами, а основная сумма долга выплачивается в конце срока и 2) когда долг и проценты погашаются последовательно на протяжении всего срока ссуды. В обоих случаях предусматривается выплата комиссионных. Ссуды с периодической выплатой процентов. Если комиссионные не выплачиваются, то доходность равна годовой ставке сложных процентов, эквивалентной любым применяемым в сделке процентным ставкам. Ситуация усложняется, если имеется еще один источник дохода для кредитора — комиссионные. Пусть ссуда D погашается через n лет, проценты по простой процентной ставке i выплачиваются регулярно в конце года. Проценты в таком случае равны Di. Должнику с учетом комиссионных выдается ссуда в размере D (1 - g). Балансовое уравнение, полученное дисконтированием всех платежей по неизвестной ставке iЭ, имеет вид: Здесь v = (1 + iЭ)-1, . Теперь это уравнение можно представить в виде функции от iЭ следующим образом: Если проценты выплачиваются р раз в году, то Задача, следовательно, заключается в нахождениикорня степенной функции. Пример 9.10. На три года выдана ссуда в 1 млн. руб. под 10% годовых,проценты выплачиваются ежегодно. При выдаче ссуды сделана скидка в пользу владельца денег в размере 5%. В результате должник получил 950 тыс. руб. Для расчета искомой ставки iЭ сразу можно написать функцию от iЭ: Решение, например, методом Ньютона - Рафсона или простым подбором дает iЭ = 1,12088. Таким образом, доходность операции для кредитора и соответственно цена кредита для должника в виде годовой ставки сложныхпроцентов равны 12,088%. По-видимому, здесь уместно произвести проверкурезультата и описать процесс погашения ссуды исходяиз найденного значения процентной ставки. Итак, долг в размере 950 тыс. руб. вырастает за первый год до 950 х 1,12088 = 1064,84, после первой уплаты задолженность составит 964,68; на конец второго года имеем 964,84 х 1,12088 - 100 = 981,47 и, наконец, в последнем году сумма, подлежащая уплате, равна 981,47 х 1,12088 = 1100 тыс., руб. (см. рис. 9.1). Ссуды с периодическими расходами по долгу. Пусть по ссуде периодически выплачиваютсяпроценты и погашается основной долг, причем сумма расходовпостоянна. Тогда балансовое уравнение для случая, когда платежи производятся вконце года, можно представить в виде где R — ежегодная сумма по обслуживанию долга (срочная уплата). Поскольку (см. параграф 7.3), то (9.18) Аналогично для случая, когда погасительные платежи осуществляются р раз в году, находим (9.19) где и — коэффициенты приведения годовой и р -срочной ренты, члены которой равны расходам должника по ссуде. Пример 9.11. Пусть в примере 9.10 задолженность погашается равными платежами. Все остальные условия не изменяются. В этом случае согласно (9.18) = a 3;10(l - 0,05) = 2,48685 x 0,95 = 2,36251. Расчет iЭ по заданному значению = 2,36251 можно легко осуществить с помощью линейной интерполяции. Поскольку iЭ > 10%, то примем iн = 12% и iв = 13%. Находим следующие табличные значения коэффициентов приведения: a 3.12 = 2,38134, a 3;13 = 2,36115. Интерполяционное значение ставки iЭ = 12 + (13 - 12) = 12,933%. Нерегулярный поток платежей. Задолженность может быть погашена путем выплаты нерегулярного потока платежей: R 1,..., Rn. Эффективность кредита при таком способе погашения определим на основе следующего уравнения, балансирующего вложения и отдачи: (9.20) где tj — интервал от начала сделки до момента выплаты j -го погасительного платежа. Из условия сбалансированности сделки находим, применяя договорную ставку i, величину последнего взноса: (9.21) где q = 1 + iЭ; T = Tj, Tj — срок от выплаты j -го платежа до конца сделки. Продемонстрированный выше метод оценки показателя полной доходности на основе функции f (iЭ) применяется, в частности, при анализе облигаций и производственных инвестиций. В следующих главахмы обсудим эти проблемы.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |