|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Дисконтирование по сложной ставке процентаПри изучении простых процентов мы обсуждали математическое дисконтирование и банковский (коммерческий) учет. Первое заключалось в определении Р по значению S при заданной ставке процента, второе — при заданной учетной ставке. Применим математическое дисконтирование по сложной ставке процента. На основе (2.1) получим: , (2.10) vn = (1 + i) -n = 1/ qn. (2.11) Величину vn называют дисконтным множителем (discount factor). Значения множителя легко табулировать (см. Приложение, табл. 3). Для случаев, когда проценты начисляются т раз в году, получим: , (2.12) vmn = (1 + j / m) -mn. (2.13) Величину Р, полученную дисконтированием S, называют современной величиной (present value), или современной стоимостью S. Современная стоимость может быть рассчитана на любой момент до выплаты суммы S. Разность S - P, в случае когда Р определено дисконтированием, называют дисконтом (discount). Обозначим последний через D: D = S - P = S (1 - vn); D = S - P = S (1 - vmn). Пример 2.9. Сумма 5 млн. руб. выплачивается через пять лет. Необходимо определить ее современную стоимость при условии, что применяется ставка сложных процентов, равная 12% годовых. Дисконтный множитель для данных условий составит vn = 1,12-5 = 0,565743, т.е. сумма уменьшается (дисконтируется) почти на 44%. Современная ее величина равна Р = 5 000 000 х 1,12-5 = 2 837 134,28 руб. Современная величина суммы денег — одна из важнейших характеристик, применяемых в финансовом анализе. Кратко остановимся на некоторых ее формальных свойствах. Прежде всего отметим очевидное свойство — чем выше ставка процента, тем сильнее дисконтирование при всех прочих равных условиях (рис. 2.4). Например, если в примере 2.9 увеличить ставку вдвое, то дисконтный множитель снизится с 0,5674 до 0,3411. Значение дисконтного множителя уменьшается и с ростом величины т.
Влияние срока платежа также очевидно — с увеличением срока при прочих равных условиях размер современной стоимости убывает. Отсюда следует, что при очень больших сроках она крайне незначительна. Например, если взять весьма умеренную ставку i = = 12%, то для п = 10, п = 50 и п = 100 получим следующие значения дисконтных множителей: 0,32197, 0,00346 и 0,000012. Заметим, что инфляционные ставки приводят к бессмысленным результатам даже при относительно небольших сроках: например, при ставке 200% и сроке пять лет дисконтный множитель равен 0,004116, т.е. близок к нулю. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |