|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Ставка наращения и учетная ставка. Прямые и обратные задачиКак было показано выше, оба вида ставок применяются для решения сходных задач. Однако для ставки наращения прямой задачей является определение наращенной суммы, обратной — дисконтирование. Для учетной ставки, наоборот, прямая задача заключается в дисконтировании, обратная — в наращении.
Очевидно, что рассмотренные два метода дисконтирования — по ставке наращения i и учетной ставке d — приводят к разным результатам даже тогда, когда i = d. Заметим, что учетная ставка отражает фактор времени более жестко. Так, из формулы (1.8) следует, что при п > 1/ d величина дисконтного множителя и, следовательно, суммы Р станет отрицательной. Иначе говоря, при относительно большом сроке векселя учет может привести к нулевой или даже отрицательной сумме Р, что лишено смысла. Например, при d = 20% уже пятилетний срок достаточен для того, чтобы владелец векселя ничего не получил при его учете. Влияние фактора времени усиливается при увеличении величины ставки. Так, при d = 100% отрицательный результат проявится уже при п > 1. Такая ситуация не возникает при математическом дисконтировании: при любом сроке современная величина платежа здесь больше нуля. Для иллюстрации сказанного на рис. 1.6 и в табл. 1.1 приведены дисконтные множители (ДМ) для случая, когда i = d = 20%.
Таблица 1.1 Дисконтные множители, i = d = 20%
Сравнивая формулы (1.1) и (1.9), легко понять, что учетная ставка дает более быстрый рост суммы задолженности, чем такой же величины ставка наращения. Множители наращения (МИ) для двух видов ставок при условии, что i = d = 20%, показаны на рис. 1.7 и в табл. 1.2. Таблица 1.2 Множители наращения, i = d = 20%
Из сказанного выше следует, что выбор конкретного вида процентной ставки заметно влияет на финансовые итоги операции. Однако возможен такой подбор величин ставок, при котором результаты будут равноценными. Проблема эквивалентности процентных ставок рассматривается в гл. 3. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |