АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задачі до розділу 7.2

Читайте также:
  1. I. Розв’язати задачі
  2. IV. Розв’язати задачі
  3. В) задачі та ділові ігри
  4. В) задачі та ділові ігри
  5. В) задачі та ділові ігри
  6. Висновки до 3 розділу
  7. ВКАЗІВКИ ДО ВИРІШЕННЯ ЗАДАЧІ.
  8. Вставка розриву сторінки або розділу
  9. Додаткова література до розділу І
  10. ЗАВДАННЯ ДЛЯ ПЕРЕВІРКИ І САМОПЕРЕВІРКИ ЗАСВОЄННЯ РОЗДІЛУ «ДИДАКТИКА»
  11. Загальна постановка задачі в багатокритеріальних системах
  12. Задачі для самоконтролю

Задача 7.2.1

 

Знайти дисперсію та середнє квадратичне відхилення кількості очок, що випадають при киданні кубика.

 

Рішення

 

Перелічимо всі можливі значення дискретної випадкової величини Х – кількості очок, що випадають при киданні кубика Х: {1, 2, 3, 4, 5, 6}. Складемо закон розподілу ймовірностей дискретної випадкової величини Х.. Ймовірності випадання будь якої з шести можливих варіантів кількості очок однакові

 

X            
P

Знайдемо математичне сподівання дискретної випадкової величини Х:

 

 

Знайдемо дисперсію дискретної випадкової величини Х двома способами: за означенням (І спосіб) і за теоремою (ІІ спосіб).

 

І спосіб

 

За формулою (7.1) знайдемо дисперсію щодобового продажу товару, для цього враховуючи, що М(Х)=3,5, складемо таблицю розподілу

 

[Х-М(Х)]2 (1-3,5)2 (2-3,5)2 (3-3,5)2 (4-3,5)2 (5-3,5)2 (6-3,5)2
P

 

 

 

ІІ спосіб

 

Для застосування формули (7.3) складемо таблицю розподілу

 

X2            
P

 

.

 

.

 

Задача 7.2.2

 

Знайти двома способами дисперсію та середнє квадратичне відхилення дискретної випадкової величини, яка задана законом розподілу:

 

а)

Х -4 -1        
Р 0,1 0,2 0,1 0,3 0,1 0,2

б)

Х          
Р 0,1 0,2 0,1 0,3 Р5

 

Задача 7.2.3

 

Закони розподілу дискретних незалежних випадкових величин Х та У наведено відповідно у таблицях

 

Х -2      
Р 0,1 0,3 0,4 0,2
У        
Р 0,2 0,2 0,4 0,2

 

Знайти дисперсію та середнє квадратичне відхилення дискретної випадкової величини 3 Х+2У.

 

Задача 7.2.4

 

Скласти закон розподілу дискретної випадкової величини Х – числа випадання „герба” при п’яти киданнях монети, знайти математичне сподівання, дисперсію і середнє квадратичне відхилення.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)