Розділ 3.1. Ймовірність появи хоча б однієї події
Теорема: Ймовірність появи хоча б однієї з подій , незалежних у сукупності, дорівнює різниці між одиницею і добутком ймовірностей протилежних подій .
. (3.1)
Доведення
Нехай подія А полягає в появі хоча б однієї з подій . Подія А і подія (жодна з подій не настала) протилежні, тому сума їх ймовірностей дорівнює одиниці.
.
Звідси
,
,
.
Наслідок: Якщо події мають однакову ймовірність, що дорівнює , тоді ймовірність появи хоча б однієї з цих подій визначається за формулою
. (3.2)
Наприклад:
1. Ймовірність виготовлення стандартної деталі на одному з трьох верстатів відповідно дорівнюють =0,8, = 0,85, = 0,9. Знайти ймовірність виготовлення хоча б однієї стандартної деталі при роботі на трьох верстатах (подія А).
Рішення
Знайдемо ймовірності протилежних подій (виготовлення нестандартних деталей на кожному з верстатів)
.
2. Ймовірність того, що подія відбудеться хоча б один раз в трьох незалежних в сукупності випробуваннях, дорівнює 0,964. Знайти ймовірність появи події в одному випробуванні, вважаючи, що ймовірність появи події в кожному випробуванні однакова.
Рішення
Використовуючи формулу (3.2), маємо
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | Поиск по сайту:
|