АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методами сглаживания

Читайте также:
  1. Анализ движения денежных средств прямым и косвенным методами.
  2. Аналитические методы сглаживания временных рядов
  3. Визначення границі міцності бетону неруйнівними методами.
  4. Доходный подход представлен двумя основными методами оценки – методом дисконтированных денежных потоков и методом капитализации прибыли.
  5. Изучение структуры металлов и сплавов методами макроскопического и микроскопического анализа.
  6. Корекція страхів методами арт-терапії
  7. МОЖНО ЛИ ПОЛЬЗОВАТЬСЯ ВСЕМИ ТРЕМЯ МЕТОДАМИ?
  8. Переоценка основных средств осуществляется методами ...
  9. Понятие об адаптивных принципах настройки моделей алгоритмического сглаживания
  10. Расчет потребности предприятия в оборотных средствах осуществляется различными методами: нормативным, аналитическим, коэффициентным, в форме баланса и др.
  11. Расчет прочности тела плотины методами сопротивления материалов

 

Следующим шагом в исследовании свойств ряда динамики является обнаружение характера его тенденций с последующей пролонгацией таковой в будущее, если конечно тенденция существует. При решении такого рода задач исследователь может воспользоваться хорошо разработанным инструментарием сглаживания временных рядов, методы которого условно можно разделить на две группы:

- аналитические, при использовании которых заранее предполагается вид зависимости, описывающей тенденцию ряда, с последующей оценкой параметров модели сглаживания;

- алгоритмические, которые не предполагают априорных знаний сглаживающей кривой, ориентируясь лишь на алгоритм расчета сглаженных уровней ряда.

Как правило, самым распространенным способом восстановления оценок априорно заданной модели временного ряда является МНК, используемый в рамках однофакторной либо многофакторной регрессионной модели [1, 4, 11, 13, 19, 25, 25, 31, 32, 52, 68, 69 и др.]. К алгоритмическим методам выделения тенденции ряда относят различные алгоритмы усреднения данных по ряду [25, 31, 32, 36, 68, 69 и др.].

В любом случае, вне зависимости от группы методов выбранных исследователем, они базируются на одном и том же постулате: сглаживающая кривая должна быть так построена, чтобы, сохраняя основную тенденцию ряда уменьшить диапазон его колебаний, т.е. дисперсию фактического ряда.

Сглаживающие модели временных рядов позволяют довольно успешно справляться с обоснованием и конструированием безусловных прогнозов развития разнообразных социально-экономических явлений. При этом ясно, что построение точечного прогноза носит понятный механический характер при удовлетворительных результатах идентификации и оценки модели развития.

Для отыскания прогнозного интервала предсказания поведения ряда с заданным уровнем значимости и соответствующим числом степеней свободы будем использовать тот факт, что величина ошибки прогноза, т.е. , в любой точке x также имеет нормальный (близкий к нормальному) закон распределения.

В этом случае среднее значение случайной составит: , а дисперсия ряда соответственно .

Таким образом, для получения удовлетворительного интервального прогноза искомой величины на заданную дату либо за предусмотренный промежуток времени необходимо рассчитать дисперсию ошибки прогноза , которая будет складываться из модельной дисперсии и дисперсии случайной по ряду, то есть иначе мы можем записать:

.

Здесь xp – прогноз экзогенных переменных модели.

Имея в виду возможность проведения для данного динамического ряда оценки дисперсии (s2) случайной составляющей временного ряда, т.е. , и оценить модельную дисперсию , значение которой определяется спецификой конкретного модельного представления систематической составляющей ряда, можем получить оценку среднеквадратической ошибки прогноза, которая составит .

При этом, как известно, величина среднеквадратической ошибки ряда может быть оценена по формуле:

, где

- сглаженное значение ряда;

- число степеней свободы.

Соответственно, интервальный прогноз рассчитываем как точечный прогноз плюс минус среднеквадратическая ошибка прогноза, умноженная на t-статистику Стьюдента с заданным уровнем значимости и соответствующим числом степеней свободы, определяемых из числа уровней исследуемого ряда за вычитанием количества параметров сглаживающей модели. Таким образом, окончательно интервальный прогноз временного ряда на l периодов вперед можно оценить следующим образом:

(2.3.1), где

- значение точечного прогноза динамики ряда на (N+l) -й момент времени.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)