|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Экспоненциальное сглаживание БраунаДовольно часто при исследовании временных рядов используют методы экспоненциального сглаживания (модели Брауна) [3, 25, 31, 36, 68. Это объясняется тем, что они позволяют более обоснованно и сбалансированно учитывать в текущем сглаженном уровне временного ряда его историю. Одна из основных особенностей этих методов заключается в том, для расчета сглаженного значения уровня t нам необходимо знать предыдущее сглаженное значение St-1 и фактическое значение временного ряда уt . В практике моделирования динамических рядов используется множество разновидностей моделей Брауна. Для примера поясним принципы построения и оценки параметров модели экспоненциального сглаживания, а также использования ее в качестве генератора прогнозной информации для т.н. простой формы модели Брауна. Запишем формулу для расчета St - сглаженного значения для t-го уровня ряда:
где St – значение экспоненциальной средней в момент t; St-1 – значение экспоненциальной средней в момент t-1;
Величина Первое, что необходимо отметить в сглаживании Брауна – это принципиально другое оценивание весов предыдущих значений ряда. Если записать значение сглаженного ряда St и последовательно раскрывать значения St-1, St-2, …, через предыдущие уровни ряда и так до y0=S0 , используя рекуррентное соотношение (3.2), то в итоге легко получаем следующее представление исходного соотношения:
В итоге получаем следующее рекуррентное соотношение для вычисления усредненного значения ряда методом Брауна:
где t в данном случае число членов ряда; y0 - является начальным уровнем временного ряда. Вопрос о выборе начального уровня может быть решен несколькими путями. В первом случае, если имеются прошлые данные, то можно использовать среднюю арифметическую этих данных или их части. Если такими данными мы не располагаем, то в качестве нулевого уровня может быть использована средняя арифметическая нескольких начальных значений исходного ряда, либо просто первое значение ряда. Также начальное значение может быть оценено исходя из уже полученной формулы, из которой следует, что начальному значению после t итераций придается вес Рассмотрим полученную формулу (2.3.3). Допусти, что в нашем распоряжении достаточно большой временной ряд, т.е.
то есть величина St – сглаженное значение ряда, является взвешенной суммой всех членов ряда. При этом величины весов в зависимости от того насколько далеко отстоит уровень от сглаживаемого будут убывать экспоненциально, что очевидно из соотношения (2.3.4). Вес значения уровня t составит Определим модельную дисперсию ряда, заданного соотношением (2.3.4).
Так как значение параметра сглаживания ряда динамики колеблется в пределах Выбор величины постоянной сглаживания требует особого внимания. Рассмотрим критические значения На практике подбор допустимого значения параметра сглаживания рекомендуется производить эмпирическим путем, то есть, итеративно перебирая его возможные значения и выбирая оптимальный уровень коэффициента по критерию минимизации дисперсии ошибки прогноза на тестовом наборе данных. Этот способ предлагается как наиболее достоверный. На выбор постоянной сглаживания будут влиять конкретные специфические характеристики временного ряда. Опыт исследователей показывает, что наибольшая точность при прогнозировании экономических временных рядов может быть достигнута при практически любом допустимом значении Простое экспоненциальное сглаживание Брауна предполагает оценивание текущего значения одного коэффициента в прогнозной модели динамики временного ряда следующим образом
Окончательно, с учетом сделанных ранее объяснений, интервальный прогноз, проведенный методом простого экспоненциального сглаживания можно оценить следующим образом:
Вследствие успешности практического использования этой модели она была развита Р. Г. Брауном и Р. Ф. Майером для процессов, которые описывались моделями, состоящими из многих полиномиальных членов [3, 31, 36]. За исходную гипотезу принимается то, что временной ряд описывается полиномом N порядка, а прогноз на
где Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |