|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Оценка количественного состава группы экспертовКачественные и количественные параметры состава экспертной группы всегда взаимосвязаны, что нередко отражается в конкретных методиках подбора экспертов. Это объясняется тем, что в конечном итоге определяющий критерий обоснования численности - это, прежде всего достижение высокого качества прогноза, генерируемого в результате индивидуального или же группового оценивания. А качественный экспертный прогноз возможен лишь при условии априорно высоких качественных параметров привлекаемых к его разработке специалистов по исследуемой проблеме. На практике аналитики обычно используются два основных подхода при обосновании численности и качественного состава членов экспертной группы. Условно их можно разделить на статистический и эвристический с элементами количественного анализа. Ниже приводятся методы расчетов, отражающих оба подхода. 1. Статистический подход. 1.1. В качестве базы обоснования объема репрезентативной выборки экспертов можно воспользоваться некоторыми результатами теории вероятности при различных условиях генерирования случайной величины [1]. В частности полезным может оказаться следствие из различных форм закона больших чисел, в частности из неравенства Чебышева
1.2. Использование результатов прикладного статистического анализа. Осуществляется кластерный анализ ответов экспертов (объединение экспертов, имеющих близкие оценки, в одну группу либо высокие показатели межклассовых расстояний) по всем оцениваемым вопросам экспертизы. В группу отбираются эксперты, ответы которых дают оптимальное значение по выбранному критерию качества кластеризации [2], например минимум среднеквадратического отклонения их ответов по тестовому множеству от среднего арифметического их групповой оценки. В том случае, если эксперты дают оценки в метрической шкале, то среднеквадратическое отклонение находится по формуле
где xij- оценка i-го эксперта по j-у вопросу, причем 2. Эвристический подход. Примером эвристической процедуры обоснования численности экспертной группы можно привести метод “снежного кома”. Его формальное описание следует ниже. 2.1. Пусть М0 – исходное множество экспертов, известных заранее. Осуществляется последовательный опрос специалистов из первоначального множества М0 с целью выявления всего множества экспертов компетентных по данному вопросу. Первый опрошенный из них называет m1(1) новых лиц, после чего кандидатов становится М0 + m1(1). После опроса любого k- го лица из М0 выявленных лиц станет Очевидно, что необходимо выявить компромисс между желанием достичь идеально полного списка и нежеланием расходовать излишне много времени и средств на полный перебор и оценку потенциальных кандидатов. Для чего предлагается построить стохастическую модель рассмотренного ранее процесса на основе данных о потенциальном множестве экспертов, выявленных к окончанию какого-то тура опроса. Основной момент, который следует учесть при этом, что любое множество экспертов конечно и, начиная с какого-то момента, упоминаемые специалисты будут повторяться [25]. Обозначим как (N+1) - число всех кандидатов, которые могли бы быть признаны в качестве экспертов, оно заранее неизвестное. М0 - число априорно известных кандидатов. m - число лиц, называемое каждым опрашиваемым кандидатом; m¢ - число новых, не входящих в ранее названное множество М0 - лиц, названных каким-либо опрошенным. Допустим, что каждый опрошенный из М0 называет m неизвестных ему лиц из N. Рассмотрим случай полной неопределенности, т.е., когда опрошенный с равной вероятностью называет любые m лиц из N. При этом m¢ - случайная величина, принимающая значения от 0 до m. Как следует из комбинаторных соображений, вероятность того, что какой-то опрошенный из М0 назовет l новых, ранее не упомянутых лиц, можно оценить как Следует отметить, что
где Отсюда следует, что исходное множество потенциальных экспертов по проблеме («генеральная совокупность») может быть оценена как При использовании на практике найденного числа 2.2. Определение верхней и нижней границ численности специалистов, входящих в группу экспертов, может строиться и на основе некоторых разумных гипотез. В том числе, относительно требований, предъявляемых к специалистам в данной предметной области. В качестве примера могут быть приведены следующие рассуждения [16, 18]. С одной стороны число человек, входящее в экспертную группу должно быть таким, чтобы удовлетворялось условие достаточной средней компетентности по группе, т.е. Таким образом, необходимое (n*), обеспечивающее требуемый качественный уровень, число экспертов можно оценить из условия выполнения соотношения вида
Таким образом, исходя из данного обоснования, окончательно количество человек в группе может быть найдено из условия Заметим, что независимо от метода, используемого для подбора группы экспертов, возникает вопрос о ее составе. Считается, что в группах с однородным составом (по образовательному, должностному, возрастному, профессиональному статусу) бывает меньше расхождений между экспертами, быстрее происходит процесс согласования группового решения. В группах со случайным подбором кандидатов, как правило, эксперты приходят к согласованному мнению не так быстро, зато вырабатывают более широкий диапазон альтернатив и допускают меньше ошибок. В этой связи особое значение уделяется количественным методам обоснования процедур выявления необходимых качественных кондиций экспертной комиссии.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |