Достаточные условия оптимальности
Общая формулировка достаточных условий: если из утверждения В всегда следует утверждение А, то В достаточно для А. Применительно к задаче оптимизации из утверждения В (решение является лучшим на множестве V, включающем множество D, причем принадлежит D) всегда следует утверждение А ( - лучший элемент множества D) (рис.1.8)).
Рис. 1.8
Таким образом, неулучшаемость на множестве, охватывающем D, вместе с принадлежностью к D, является достаточным условием того, чтобы было искомым оптимальным решением.
Иными словами, для того, чтобы X° был оптимальным решением на множестве D, достаточно чтобы X° был оптимальным решением на множестве V, включающем множество D, и принадлежал множеству D.
Использование достаточных условий целесообразно при сложноорганизованных множествах допустимых решений D, что затрудняет решение задачи, расширенное же множество V оказывается гораздо проще.
Например множество D, представленное на рис. 1.8 целесообразно заменить областью V, которая представляет собой прямоугольник, включающий в себя область D и может быть описана автономными ограничениями вида (см. рис. 1.8)
2. Определение максимума функции одной переменной. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | Поиск по сайту:
|