|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Способы формирования сводного критерия оптимальностиОбозначим через Iυ υ-ый показатель функционирования процесса и будем для простоты считать, что в результате оптимизации желательно каждый из m таких показателей (частных критериев) увеличить. Если некоторые из показателей, например капиталовложения М, нужно уменьшить, то соответствующий им частный критерий Iυ, примем равным - М. Через обозначим параметры процесса и системы управления, подлежащие оптимальному выбору (переменные управления), и будем первоначально считать задачу полностью детерминированной, полагая, что значение каждого из частных критериев становится известным при заданных . Совокупность ограничений, накладываемых на оптимизируемые параметры управления составит область допустимых значений варьируемых переменных. Для пояснения способов формирования сводного критерия ограничимся случаем с двумя переменными U1 и U2, подлежащими выбору и двумя частными критериями I1 и I2, геометрическая интерпретация которого представлена на рис. 8.1.
Рис.8.1
Аналогично отображая каждую точку границы области допустимых значений управлений V, получаем на плоскости критериев область допустимых значений критериев I, включающую в себя все значения частных критериев I1 и I2, которые могут быть получены, при допустимых значениях управлений U1 и U2. Очевидно, что оптимальное решение по одному критерию приводит в точку и не совпадает с оптимальным решением по другому критерию (точка ). Чтобы найти оптимальное решение , можно пойти по пути формирования из частных критериев Iυ сводного критерия . Рассмотрим несколько способов получения сводного критерия.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |