АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод направленного перебора

Читайте также:
  1. F. Метод, основанный на использовании свойства монотонности показательной функции .
  2. FAST (Методика быстрого анализа решения)
  3. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  4. I. 2.1. Графический метод решения задачи ЛП
  5. I. 3.2. Двойственный симплекс-метод.
  6. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  7. I. Метод рассмотрения остатков от деления.
  8. I. Методические основы
  9. I. Методические основы оценки эффективности инвестиционных проектов
  10. I. Организационно-методический раздел
  11. I. Предмет и метод теоретической экономики
  12. I. Что изучает экономика. Предмет и метод экономики.

Данный метод аналогичен методу равномерного поиска для функции одной переменной.

Делим области допустимых значений и на равные отрезки таким образом, чтобы количество отрезков по обеим осям было равно , где - величина допустимой погрешности. . Проведя перпендикуляры к осям во всех выделенных точках, получаем сетку на плоскости X1, X2 с количеством узлов (рис. 3.4). Вычисляем значения во всех узлах (рис. 3.4.). Сравниваем полученные значения и за решение принимаем координаты узла с наибольшим значением целевой функции .

Рис. 3.4.

Чем меньше шаг сетки, тем точнее результат, но и выше трудоемкость. На практике данный метод применяется только для вычисления глобального максимума невыпуклых функций.

Все остальные применяемые на практике методы, представляют собой итерационные многошаговые процедуры, в которых на каждом шаге расчета должно получаться большее значение целевой функции, чем на предыдущем.

Каждый метод включает в себя:

1) правило перехода от одного шага к другому,

2) правило остановки расчета.

В зависимости от правила перехода численные методы делятся на:

1. методы нулевого порядка, в которых правило перехода требует вычисления только самой целевой функции,

2. методы первого порядка (градиентные методы) в которых требуется вычисление первых частных производных целевой функции,

3. методы второго порядка – требуют вычисления вторых частных производных целевой функции.

Ниже будут рассмотрены только методы нулевого и первого порядков, т.к. в задачах оптимизации с возможными неточностями в исходных данных и с функциями, заданными алгоритмически, характерными для оптимизации технологических процессов, вычисление матрицы вторых производных приводит к значительным ошибкам и методы второго порядка не находят применения.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)