АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Карбаминовые соединения

Читайте также:
  1. II. Синтез заданного органического соединения
  2. PCI. (Peripheral Component Interconnect bus – шина соединения периферийных компонентов)
  3. Альдегидами называются соединения, в которых карбонильная группа связана с двумя атомами водорода или с одним атомом водорода и одним атомом углерода.
  4. Аналогичный ему по строению дикаин, примерно в 10 раз активнее кокаина. Сейчас широко применяются более сложные по структуре соединения (например, анилид тримекаин).
  5. Ароматические нитросоединения
  6. Б) работа в контакте с соединениями свинца.
  7. Борьба казахского народа против гнета среднеазиатских ханов и колониальной политики царизма в XIX веке. Завершение присоединения Казахстана к России.
  8. В каких продуктах не встречаются нитросоединения? ( укажите один ответ).
  9. Взаимосогласованные договоры и договоры присоединения.
  10. Витамины - это низкомолекулярные соединения, которые
  11. Водородные соединения азота
  12. Вы подцепляете к тягачу полуприцеп, но соединения не происходит. Укажите причину неисправностей и объясните способы их устранения.

CO2 может реагировать с аминогруппами белков согласно реакции:

R-NH2 + CO2 — RNH-CO2" + H+.

При физиологических значениях рН только не­большое количество CO2 переносится в этой фор­ме, главным образом, в комплексе с гемоглобином (карбаминогемоглобин). Сродство дезоксигениро-ванного гемоглобина (дезоксигемоглобина) к CO2 в 3,5 раза выше, чем у оксигемоглобина. Увеличе­ние сродства крови к CO2 при ее деоксигенации часто называют эффектом Холдейна (табл. 22-6). В норме PCO2 существенно не влияет на фракцию CO2, которая транспортируется в виде карбами-ногемоглобина.

Влияние гемоглобинового буфера на транспорт CO2

Эффект Холдейна отчасти обусловлен буферными свойствами гемоглобина (гл. 30). При нормальном рН гемоглобин может выполнять роль буфера за счет высокого содержания гистидина. Кроме того, кислотно-основные свойства гемоглобина зависят от степени его оксигенации:

H++HbO2-> HbH++O2.

После высвобождения кислорода в тканевых капил­лярах молекула гемоглобина начинает вести себя подобно основанию; связывая ионы водорода, ге­моглобин смещает равновесие СО2-бикарбонат пре­имущественно в сторону образования бикарбоната:

CO2 + H2O + HbO2 — HbH++ HCO3"+ O2.


ТАБЛИЦА 22-6. Транспорт СО2(из расчета на 1 л цельной крови)

Форма   Плазма   Эритроциты   Плазма + эритроциты   Доля (%)  
Цельная смешанная венозная кровь  
Растворенный CO2   0,76   0,51   1,27   5,5  
Бикарбонат   14,41   5,92   20,33   87,2  
Карбаминовые соединения   Незначительное   1,70   1,70   7,3  
Общее содержание CO2 (ммоль/л)   15,17   8,13   23,30      
Цельная артериальная кровь                  
Растворенный CO2   0,66   0,44   1,10   5,1  
Бикарбонат   13,42   5,88   19,30   89,8  
Карбаминовые соединения   Незначительное   1,10   1,10   5,1  
Общее содержание CO2 (ммоль/л)   14,08   7,42   21,50      

Если не указано иное, значения везде выражены в ммоль. (С разрешения. Из: Nunn J. R Applied Respiratory Physiology, 4th ed. Butterworths, 1993.)


В результате дезоксигемоглобин увеличивает ко­личество CO2, переносимого венозной кровью в форме бикарбоната. По мере того как CO2 посту­пает из тканей и превращается в бикарбонат, об­щее содержание CO2 в крови растет (табл. 22-6). В легких процесс имеет противоположное на­правление. Оксигенация гемоглобина усиливает его кислотные свойства, и высвобождение ионов водорода смещает равновесие преимущественно в сторону образования CO2:

O2 + HCO3" + HbH+-CO2 + H2O + HbO2.

Концентрация бикарбоната снижается по мере того, как образуется и элиминируется CO2, так что в легких падает общее содержание CO2 в крови. Отметим, что имеется разница в содержании CO2 в цельной крови (табл. 22-6) и плазме (табл. 22-7).

Кривая диссоциации CO2

Кривую диссоциации CO2 можно построить в виде графического отображения зависимости общего содержания CO2 от PCO2. Аналогично можно ко­личественно отобразить долю каждой из форм CO2 (рис. 22-24).

Запасы CO2

Запасы углекислого газа в организме велики (при­близительно 120 л у взрослого человека) и пред­ставлены главным образом в виде растворенного CO2 и бикарбоната. Когда равновесие между выра­боткой и элиминаций углекислого газа нарушает­ся, то в течение 20-30 мин устанавливается новое равновесие (для кислорода такое уравновешива­ние происходит не позднее 4-5 мин). По скорости уравновешивания запасы CO2 подразделяют на быстрые, средние и медленные. Емкости сред­них и медленных запасов больше, а это значит, что при резких изменениях вентиляции скорость уве­личения PaCO2 меньше, чем скорость снижения.

Регуляция дыхания

Автоматизм самостоятельного дыхания является результатом ритмической активности дыхатель-


ных центров в стволе головного мозга. Дыхатель­ные центры управляют дыхательными мышцами, что позволяет поддерживать нормальное напряже­ние O2 и CO2 в организме. Базальная активность нервных центров модулируется сигналами из дру­гих областей головного мозга, произвольными и непроизвольными, а также центральными и пе­риферическими рецепторами.

!.ДЫХАТЕЛЬНЫЕ ЦЕНТРЫ

Основной дыхательный ритм исходит из продол­говатого мозга. Выделяют две группы медулляр­ных нейронов: дорсальную дыхательную группу, которая активизируется в основном при вдохе, и вентральную дыхательную группу, которая ак­тивизируется при выдохе. Хотя это и не установ­лено окончательно, происхождение основного ритма связано либо с собственной спонтанной электрической активностью дорсальной группы, либо с взаимосвязанной активностью дорсальной и вентральной групп. Тесная связь дорсальной дыхательной группы нейронов с солитарным трактом, возможно, объясняет рефлекторные из­менения дыхания при стимуляции блуждающего и языкоглоточного нервов.

Две зоны варолиевого моста воздействуют на дорсальный медуллярный центр (центр вдоха). Нижний центр моста (апнейстический) — возбуж­дающий, верхний центр моста (пневмотаксичес-кий) — угнетающий. Дыхательные центры вароли-ева моста осуществляют тонкую регуляцию частоты и ритма дыхания.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)