АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Вычисление предельного распределения суммы прямого и обратного времен возвращения (распределения интервала, накрывающего бесконечно далекий момент)
Для определения этого предельного распределения нужно перейти к пределу в равенстве (2.45). Равенство (2.45) можно преобразовать заменой переменной интегрирования z=t-ν
Первое слагаемое имеет предел, равный на основании теоремы Блекуэлла, второе слагаемое имеет пределом единицу, так как справедливо равенство если воспользоваться интегральным уравнением восстановления (2.16) или узловой теоремой восстановления, наконец, последнее слагаемое имеет пределом если использовать узловую теорему восстановления.
Окончательно получаем
(2.52) 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | Поиск по сайту:
|