|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Модели регрессии, нелинейные по оцениваемым коэффициентамНелинейными по оцениваемым параметрам моделями регрессииназываются модели, в которых результативная переменная yi нелинейно зависит от коэффициентов модели β0…βn. К моделям регрессии, нелинейными по оцениваемым параметрам, относятся: 1) степенная функция: 2) показательная или экспоненциальная функция: 3) логарифмическая парабола: 4) экспоненциальная функция: 5) обратная функция: 6) кривая Гомперца: 7) логистическая функция или кривая Перла-Рида: Кривыми насыщения называются показательная, логарифмическая и экспоненциальная функции, т. к. будущий прирост результативной переменной зависит от уже достигнутого уровня функции. Кривые насыщения применяются для характеристики явлений и процессов, величина роста которых является ограниченной величиной (например, в демографии). Определение. S-образными кривыми называются кривая Гомперца и кривая Перла-Рида. Данные кривые представляют собой кривые насыщения с точкой перегиба. S-образные кривые применяются для характеристики явлений, включающий в себя два последовательных процесса – ускорения и замедления достигнутого уровня развития. Подобные явления характерны для демографии, страхования и других областей. Модели регрессии, нелинейные по оцениваемым коэффициентам, делятся на два класса: 1) модели регрессии, которые можно с помощью преобразований привести к линейному виду; 2) модели регрессии, которые невозможно привести к линейному виду. Рассмотрим первый класс моделей регрессии. Показательная функция вида является нелинейной по коэффициенту β1 и относится к классу моделей регрессии, которые можно с помощью преобразований привести к линейному виду. Данная модель характеризуется тем, что случайная ошибка εi мультипликативно связана с факторной переменной хi. Данную модель можно привести к линейному виду с помощью логарифмирования: Log yi=log β0+ хi* logβ1+ logεi. Для более наглядного представления данной модели регрессии воспользуемся методом замен: log yi=Yi; log β0=A; logβ1=B; logεi=E. В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме: Yi=A+Bхi+E. Таким образом, можно сделать вывод, что рассмотренная показательная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов. Другим примером моделей регрессии первого класса является степенная функция вида: Данная модель характеризуется тем, что случайная ошибка βi мультипликативно связана с факторной переменной хi. Данную модель можно привести к линейному виду с помощью логарифмирования: lnyi=lnβ0+β1 lnхi + lnεi. Для более наглядного представления данной модели регрессии воспользуемся методом замен: ln yi=Yi; ln β0=A; lnхi=Xi; lnεi=E. В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме: Yi=A+β1Xi+E. Таким образом, можно сделать вывод, что рассмотренная степенная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов. Рассмотрим второй класс моделей регрессии, нелинейных по оцениваемым коэффициентам. Показательная функция вида относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка βi аддитивно связана с факторной переменной хi. Степенная функция вида относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка εi аддитивно связана с факторной переменной хi. Таким образом, для оценки неизвестных параметров моделей регрессии, которые нельзя привести к линейному виду, нельзя применять классический метод наименьших квадратов. В этом случае используются итеративные процедуры оценивания (квази-ньютоновский метод, симплекс-метод, метод Хука-Дживса, метод Розенброка и др.). Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |