|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Динамические эконометрические модели. Динамической эконометрической моделью называется модель, которая в настоящий момент времени учитывает значения входящих в неё переменныхДинамической эконометрической моделью называется модель, которая в настоящий момент времени учитывает значения входящих в неё переменных, относящихся не только к текущему, но и к предыдущему моментам времени. В качестве примера динамических эконометрических моделей можно привести модели вида: yt=f(xt,xt–l), yt=f(xt,yt–l). Модель регрессии вида: yt=f(x1…xn)=f(xi) не относится к динамическим эконометрическим моделям. 1) Динамические эконометрические модели делятся на два основных типа: 2) динамические модели, в которых значения переменных, относящихся к прошлым моментам времени (лаговые значения), включены в модель с текущими значениями этих переменных. К таким моделям относятся: а) модель авторегрессии; б) модель с распределённым лагом. Моделью авторегрессии называется динамическая эконометрическая модель, в которой в качестве факторных переменных содержатся лаговые значения результативной переменной. Пример модели авторегрессии: yt=β0+β1xt+δ1yt–1+εt. Моделью с распределённым лагом называется динамическая эконометрическая модель, в которую включены не только текущие, но и лаговые значения факторных переменных. Пример модели с распределённым лагом: yt=β0+β1xt+β2xt–1+…+βLxt–L+εt. где L – это величина временного лага (запаздывания) между рядами; 3) динамические модели, в которые входят переменные, отражающие предполагаемый или желаемый уровень результативной переменной или одной из факторных переменных в определённый момент времени (t+1). Величина желаемого уровня является неизвестной и рассчитывается на основании той информации, которая имеется в наличии на предшествующий момент времени (t). В зависимости от способа расчёта желаемых переменных различают следующие виды моделей: а) модель адаптивных ожиданий (МАО); б) модель частичной (неполной) корректировки (МЧК) Моделью адаптивных ожиданий называется динамическая эконометрическая модель, которая учитывает предполагаемое или желаемое значение факторной переменной Общий вид модели адаптивных ожиданий: Примером модели адаптивных ожиданий является модель зависимости предполагаемой в будущем периоде (t+1) индексации заработных плат и пенсий на текущие цены. Моделью частичной (неполной) корректировки называется динамическая эконометрическая модель, которая учитывает предполагаемое (или желаемое) значение результативной переменной Общий вид модели частичной корректировки: Примером модели частичной корректировки является модель Литнера, которая отражает зависимость желаемого объёма дивидендов от фактического текущего объёма прибыли xt. Неизвестные коэффициенты динамических эконометрических моделей нельзя рассчитать с помощью традиционного метода наименьших квадратов, потому что они не будут удовлетворять свойствам несмещённости, состоятельности и эффективности. Неизвестные коэффициенты моделей авторегрессии оцениваются с помощью метода инструментальных переменных. Для моделей с распределённым лагом в зависимости от структуры лага для оценивания неизвестных коэффициентов применяются метод Алмон и метод Койка. Суть данных методов состоит преобразовании исходной модели с распределённым лагом к модели авторегрессии, оценки неизвестных параметров которой можно рассчитать с помощью метода инструментальных переменных. Для определения оценок неизвестных коэффициентов модели адаптивных ожиданий и модели частичной корректировки их также преобразуют в модели авторегрессии. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |