АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Многофакторные производственные функции

Читайте также:
  1. I. Прокурор: понятие, положение, функции и профессиональные задачи.
  2. I. Функции окончания «-s»
  3. I. Функции окончания «-s»
  4. III Участники игры и их функции
  5. III. Методы оценки функции почек
  6. III. Полномочия и функции территориального фонда
  7. IV. Состояние дыхательной функции
  8. V. Состояние голосовой функции
  9. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
  10. Артефакты как базовые элементы материальной культуры, их виды и функции.
  11. Аттестация гражданских служащих: понятие, цель, задачи, система, функции и принципы аттестации. Квалификационный экзамен.
  12. Б) Социокультурные функции языка.

Многофакторной производственной функцией называется функция, которая характеризует зависимость объёма производства от n -го количества факторов производства.

y=f(xi),

где

Многофакторные производственные функции полезны тем, что на их основе можно рассчитать целый ряд важнейших экономических показателей.

К основным показателям многофакторных производственных функций относятся:

1) показатель средней производительности (эффективности, отдачи) i -го фактора при условии фиксированности всех остальных факторов:

2) показатель предельной производительности (эффективности, отдачи) i -го фактора, который характеризует приращение объёма производства на единицу приращения i -го фактора, рассчитывается как частная производная по факторной переменной xi:

3) для определения характера изменения предельной производительности с изменением объёма i -го фактора при постоянном значении всех остальных факторов, включённых в модель, рассчитывается частная производная второго порядка по факторной переменной xi:

Если показатель

больше нуля, то предельная производительность возрастает с ростом объёма i-ой факторной переменной.

Если показатель

равен нулю, то можно найти такое значение объёма i-ой факторной переменной, при котором предельная производительность будет или минимальной или максимальной.

4) показатель частной эластичности i-го ресурса для многофакторной производственной функции характеризует относительное изменение результата производства на единицу относительного изменения i-ой факторной переменной:

5) потребность производства в i-том факторе выражается через функциональную зависимость вида:

xi=φ(y,x1…xi-1,xi+1…xn).

6) для любой пары факторов производства i и j можно рассчитать предельную норму замещения j-ой факторной переменной i-той факторной переменной. Эта норма равна взятому со знаком минус отношению показателей предельной производительности i-ой и j-ой факторных переменных:

При выборе конкретного вида производственной функции исследователь должен руководствоваться закономерностями изменения всех рассмотренных показателей. В некоторых случаях выбранную форму производственной функции приходится отвергать, потому что соответствующая ей система показателей противоречит результатам качественного анализа или эмпирическим данным. С другой стороны предварительные заключения о характере изменений рассмотренных показателей могут стать основным доводом в пользу выбора той или иной формы производственной функции.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)