Почему расчетная регрессия не совпадает с теоретической?
Из-за наличия случайного члена невозможно рассчитать истинные значения b,α при попытке построить прямую и определить положение линии регрессии. т.к. остатки не совпадают со значениями случайного члена
6. В чем состоит разница между случайном членом регрессии и остатками в регрессионном анализе?
Случайный член указывает на то, что существует случайная составляющая, которая влияет на зависимую переменную; остаток- измеренная величина отклонения между фактическим и расчетным значением переменной.
Случайный член (ui) включается в регрессию для подтверждения существования случайного фактора, оказывающего влияние на зависимую переменную. Yi=β1+β2Xi+ui
Остаток (ei) – измеримая разность между действительной величиной Y в соответствующем наблюдении и расчетным значением по регрессии. ei=Yi- 
В чем состоит идея метода наименьших квадратов?
Идея МНК основана на том, чтобы минимизировать сумму квадратов отклонений расчетных значений от эмпирических, т.е. нужно оценить параметры о функции f(a,x) таким образом, чтобы ошибки еi= уi-f(а,х), точнее - их квадраты, по совокупности были минимальными. Для этого нужно решить задачу минимизации суммы квадратов остатков S=e12+..+en2
В чем состоят основные достоинства и недостатки метода наименьших квадратов с точки зрения прикладной эконометрики?
Достоинства:
1. Наиболее простой метод выбора значений b1 и b2, чтобы остатки были минимальными;
2. При выполнении условий Гаусса-Маркова МНК-оценки будут наилучшими (наиболее эффективными) линейными (комбинации Yi) несмещёнными оценками параметров регрессии (b1 и b2).
Условия Гаусса-Маркова:
- модель линейна по параметрам и правильно специфицирована;
- объясняющая переменная в выборке имеет некоторую вариацию;
- математическое ожидание случайного члена равно нулю;
- случайный член гомоскедастичен;
- значения случайного члена имеют взаимно независимые распределения;
- случайный член имеет нормальное распределение
Недостатки: МНК-оценки являются эффективными линейными несмещёнными ТОЛЬКО при выполнении ВСЕХ условий Гаусса-Маркова, что на практике встречается редко.
Как получить уравнения метода наименьших квадратов, используя производные?
y=a+bx; S2=∑(yi-a-bxi)2=> (S2)a’=0 и (S2)b’=0 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | Поиск по сайту:
|