|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Показатели двухфакторной производственной функции Кобба-ДугласаДвухфакторную производственную функцию Кобба-Дугласа f(K,L) можно представить в виде: Q=A*Ka*Lβ, где Q – объём выпущенной продукции (в стоимостном или натуральном выражении); K – объём основного капитала или основных фондов; L – объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней). A, a, β – неизвестные числовые параметры производственной функции, которые подчиняются условиям: 1) 0≤а≤1; 2) 0≤β≤1; 3) A›0; 4) a+β=1. Данная производственная функция характеризуется следующими показателями: 1) частный коэффициент эластичности производственной функции Кобба-Дугласа по факторной переменной капитала K рассчитывается по формуле: Таким образом, ЭК(у)=а, т. е. частный коэффициент эластичности функции Кобба-Дугласа равен числовому параметру а, и, следовательно, является независимым от переменных К и L; 2) частный коэффициент эластичности производственной функции Кобба-Дугласа по факторной переменной затрат труда L рассчитывается по формуле: Таким образом, ЭL(у)=β, т. е. частный коэффициент эластичности функции Кобба-Дугласа равен числовому параметру β, и, следовательно, является независимым от переменных К и L; 3) коэффициент средней производительности труда производственной функции Кобба-Дугласа: 4) коэффициент средней фондоотдачи производственной функции Кобба-Дугласа: 5) коэффициент предельной производительности труда производственной функции Кобба-Дугласа: Данный показатель характеризует величину эффекта от каждой дополнительной единицы затраченного труда. Он пропорционален показателю средней производительности труда, но всегда меньше его величины, т. к. 0≤β≤1; 6) коэффициент предельной фондоотдачи производственной функции Кобба-Дугласа: Данный показатель характеризует величину эффекта от каждой дополнительной единицы основных фондов, использованной в производстве. Он пропорционален показателю средней производительности, но всегда меньше его величины, т. к. 0≤а≤1; 7) коэффициент предельной нормы технической замены факторных переменных (замены труда капиталом) производственной функции Кобба-Дугласа: Данный показатель характеризует, на сколько единиц можно уменьшить объём используемого капитала при увеличении объёма трудовых затрат на единицу и фиксированном объёме выпуска продукции. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |