АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Модели регрессии с точками разрыва

Читайте также:
  1. II. Право на фабричные рисунки и модели (прикладное искусство), на товарные знаки и фирму
  2. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  3. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  4. Аддитивная и мульпликативная модели временного ряда
  5. Адекватность трендовой модели
  6. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
  7. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
  8. Алгоритм проверки адекватности парной регрессионной модели.
  9. Алгоритм проверки адекватности парной регрессионной модели.
  10. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
  11. Альтернативные модели потребления.
  12. Анализ дискреционной налогово-бюджетной и кредитно-денежной политики с помощью модели «IS-LM».

Определение. Моделями регрессии с точками разрыва называются модели, которые нельзя привести к линейной форме, т. е. внутренне нелинейные модели регрессии.

Модели регрессии делятся на два класса:

1) кусочно-линейные модели регрессии;

2) собственно модели регрессии с точками разрыва.

Кусочно-линейные модели регрессии характеризуются тем, что вид зависимости между результативной переменной и факторными переменными может быть неодинаков в различных областях значений факторных переменных.

В качестве примера кусочно-линейной модели регрессии рассмотрим регрессионную зависимость показателя себестоимости единицы произведённой промышленной продукции (результативная переменная) от показателя объёма промышленного производства за месяц (факторная переменная). Исследуемые показатели связаны линейной зависимостью, т. к. с увеличением показателя объема промышленного производства показатель себестоимости единицы произведённой промышленной продукции снижается, и наоборот.

Но не всегда данная зависимость носит линейный характер. Если основные фонды, которые используются при производстве данной промышленной продукции, являются изношенным, то с увеличением показателя объема промышленного производства показатель себестоимости единицы произведённой промышленной продукции может также увеличиваться.

При условии, что изношенные основные фонды применяются для производства промышленной продукции до того момента, когда объём промышленного производства достигнет заранее определённого значения, можно построить кусочно-линейную модель регрессии. Предположим, что объём промышленного производства равен 500 единицам продукции. Тогда модель примет вид:

y=β0+β1x(x≤500)+β2x(x>500),

где y – себестоимость единицы промышленной продукции;

x – объём промышленного производства за месяц;

(x≤500) и (x›500) – логические выражения, принимающие значения 1, если они истинны, или 0, если они ложны.

Данная кусочно-линейная модель регрессии зависит от общего свободного члена β0 и углового коэффициента. Угловой коэффициент может быть равен либо β1 (если выражение (x≤500) истинно, т. е. равно единице), либо β2 (если выражение (x›500) истинно, т. е. равно единице).

Значение показателя объёма промышленной продукции, равное 500 единицам, считается точкой разрыва кривой регрессии.

Если же точка разрыва кривой регрессии не задана или её невозможно точно определить, то значение данной точки можно оценить с помощью дополнительного коэффициента, включённого в модель регрессии.

Заменим логические выражения в построенной кусочно-линейной модели регрессии на коэффициент β3. В результате модель примет вид:

y=β0+β1x(x≤β3)+β2x(x>β3).

Собственно модели регрессии с точками разрыва характеризуются скачкообразными изменениями зависимой переменной в нескольких точках кривой регрессии. Кусочно-линейную модель регрессии можно преобразовать в собственно модель регрессии с точками разрыва.

Допустим, что при достижении основными фондами определённого уровня изношенности, себестоимость единицы промышленной продукции резко выросла, а затем продолжила медленно снижаться при условии увеличения объёмов производства данной продукции. В этом случае регрессионная зависимость примет вид:

y=(β0+β1x)(x≤500)+(β3+β2x)(x>500).

В связи с тем, что модели регрессии с точками разрыва являются внутренне нелинейными, то неизвестные параметры данных моделей нельзя оценить с помощью классического метода наименьших квадратов. Для оценки этих параметров применяются итерационные методы нелинейного оценивания и метод максимального правдоподобия.

Если в начале эконометрического моделирования перед исследователем стоит выбор между моделью регрессии, внутренне нелинейной и линейной моделью регрессии (или сводящейся к линейному виду), то предпочтение отдаётся линейным формам моделей.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)