|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Модели авторегрессииМоделью авторегрессии называется динамическая эконометрическая модель, в которой в качестве факторных переменных содержатся лаговые значения результативной переменной. Пример модели авторегрессии: yt=β0+β1xt+δ1yt–1+εt, где β1 – это коэффициент, который характеризует краткосрочное изменение переменной у под влиянием изменения переменной х на единицу своего измерения; δ1 – это коэффициент, который характеризует изменение переменной у в текущий момент времени t под влиянием своего изменения в предыдущий момент времени (t–1). Промежуточным мультипликатором называется произведение коэффициентов модели авторегрессии (β1 * δ1). Промежуточный мультипликатор отражает общее абсолютное изменение результативной переменной у в момент времени (t+1). Определение. Долгосрочным мультипликатором называется показатель, рассчитываемый как Долгосрочный мультипликатор отражает общее абсолютное изменение результативной переменной у в долгосрочном периоде. Если для модели авторегрессии выполняется условие | δ|<1, то при наличии бесконечного лага будет справедливым равенство: В нормальной линейной модели регрессии все факторные переменные не зависят от случайной ошибки модели. Данное условие для моделей авторегрессии нарушается, потому что переменная yt-1 частично зависит от случайной ошибки модели εt. Следовательно, при оценке неизвестных коэффициентов традиционным методом наименьших квадратов ы получим смещённую оценку коэффициента при переменной yt – 1. При определении оценок неизвестных коэффициентов модели авторегрессии используется метод инструментальных переменных (IV – Instrumental variables). Суть метода инструментальных переменных заключается в том, что переменная yt – 1, для которой нарушается предпосылка применения метода наименьших квадратов, заменяется на новую переменную z, удовлетворяющую двум требованиям: 1) данная переменная должна тесно коррелировать с переменной yt–1: cov(yt–1,z)≠0; 2) данная переменная не должна коррелировать со случайной ошибкой модели εt: cov(z,ε)=0. Предположим, что на основании собранных данных была построена модель авторегрессии вида: yt=β0+β1xt+δ1yt–1+εt. Рассчитаем оценки неизвестных коэффициентов данной модели с помощью метода инструментальных переменных. В данной модели авторегрессии переменная yt коррелирует с переменной xt, следовательно, переменная yt – 1 зависит от переменной xt – 1. Охарактеризуем данную корреляционную зависимость с помощью парной модели регрессии вида: yt–1=k0+k1xt–1+ut, где k0,k1 – неизвестные коэффициенты модели регрессии; ut – случайная ошибка модели регрессии. Обозначим выражение k0+k1xt–1 через переменную zt – 1. Тогда модель регрессии для переменной yt – 1 примет вид: yt–1= zt–1+ut. Новая переменная zt – 1 удовлетворяет свойствам, предъявляемым к инструментальным переменным: 1) она тесно коррелирует с переменной yt–1: cov(zt–1,yt–1)≠0; 2) она коррелирует со случайной ошибкой исходной модели авторегрессии εt: cov(εt, zt–1). Таким образом, исходная модель авторегрессии может быть представлена следующим образом: yt=β0+β1xt+δ1(k0+k1xt–1+ut)+εt= β0+β1xt+δ1 zt–1+νt, где νt= δ1 ut+ εt. На следующем этапе оценки неизвестных коэффициентов преобразованной модели рассчитываются с помощью традиционного метода наименьших квадратов. Эти оценки будут являться оценками неизвестных коэффициентов исходной модели авторегрессии. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |