|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – МарковаОпределение коэффициентов модели регрессии осуществляется на третьем этапе схемы построения эконометрической модели. В результате этой процедуры рассчитываются оценки (приближенные значения) неизвестных коэффициентов спецификации модели. Спецификация линейной эконометрической модели из изолированного уравнения с гомоскедастичными возмущениями имеет вид: Рассмотрим метод наименьших квадратов на примере оценивания эконометрических моделей в виде моделей парной регрессии (изолированных уравнений с двумя переменными). Если уравнение модели содержит две экономические переменные – эндогенную yiи предопределенную xi, то модель имеет вид: Данная модель называется моделью линейной парной регрессии и содержит три неизвестных параметра: β0, β1, σ. (3) Предположим, что имеется выборка: (х1, y1), (х2, y2),… (хn, yn) (4) Тогда в рамках исследуемой модели данные величины связаны следующим образом: y1 = a0 + a1 * x1 + u1, y2 = a0 + a1 * x2 + u2, (5) … yn= a0 + a1 * x n + u n. Данная система называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели или схемой Гаусса-Маркова. Компактная запись схемы Гаусса-Маркова: где – вектор-столбец известных значений эндогенной переменной yiмодели регрессии; – вектор-столбец неизвестных значений случайных возмущений εi; – матрица известных значений предопределенной переменной xi модели; β = (β0 β1)Т (10) – вектор неизвестных коэффициентов модели регрессии. Обозначим оценку вектора неизвестных коэффициентов модели регрессии как Данная оценка вычисляется на основании выборочных данных (7) и (9) с помощью некоторой процедуры:
где P (X, ỹ) – символ процедуры. Процедура (12) называется линейной относительно вектора (7) значений эндогенной переменной yi, если выполняется условие: где (14) – матрица коэффициентов, зависящих только от выборочных значений (9) предопределенной переменной хi. Теорема Гаусса-Маркова. Пусть матрица Х коэффициентов уравнений наблюдений (6) имеет полный ранг, а случайные возмущения (8) удовлетворяют четырем условиям: E(ε1) = E(ε2) = … = E(εn) = 0, (15) Var(ε1) = Var(ε2) = … = Var(εn) = σ2(16) Cov(εi, εj) = 0 при i≠j(17) Cov(xi,εj) = 0 при всех значениях i и j (18) В этом случае справедливы следующие утверждения: а) наилучшая линейная процедура (13), приводящая к несмещенной и эффективной оценке (11), имеет вид: б) линейная несмещенная эффективная оценка (19) обладает свойством наименьших квадратов: в) ковариационная матрица оценки (19) вычисляется по правилу: г) несмещенная оценка параметра σ2 модели (2) находится по формуле: Следствие теоремы Гаусса-Маркова. Оценка доставляемая процедурой (19) метода наименьших квадратов, может быть вычислена в процессе решения системы двух линейных алгебраических уравнений: Данная система называется системой нормальных уравнений. Ее коэффициенты и свободные члены определяются по правилам: [x] = x1 + x2 +…+ xn, [y] = y1 + y2 +…+ yn, (24) x2] = x12 + x22 +…+ xn2, [xy] = x1*y1 + x2*y2 + … + xn*yn. Явный вид решения системы (23):
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |