|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Перевірка гіпотези про закон розподілу. Критерій згоди ПірсонаКритерієм згоди називають статистичний критерій перевірки гіпотези про закон розподілу ймовірностей випадкової величини (ознаки генеральної сукупності). Є кілька критеріїв згоди: критерій Колмогорова, критерій Смірнова, критерій Пірсона та ін. Найбільш розповсюдженим критерієм перевірки вірогідності H про закон розподілу ознаки генеральної сукупності є критерій згоди Пірсона (критерій ), який ґрунтується на порівнянні емпіричних і теоретичних частот та визначається за формулою , де m – число інтервалів, на які поділяється статистичний розподіл вибірки; nі – частота ознаки в i –му інтервалі; пі* – теоретичні частоти, підраховані за відповідними формулами закону розподілу ймовірностей, який припускається для ознаки генеральної сукупності. Теоретичні частоти знаходяться за формулою , де n – об’єм вибірки; pi – для дискретної випадкової величини є ймовірність події Х= х; для неперервної випадкової величини – ймовірність, що ознака Х попаде в і-ий інтервал. Нехай висунуто гіпотезу H 0: випадкова величина Х розподілена за законом А. Здійснивши вибірку обсягу п, знаходять і записують у вигляді таблиці інтервальний статистичний розподіл частот:
Оскільки перевіряється гіпотеза про те, що розподіл ознаки Х генеральної сукупності описується певною (конкретною) функцією розподілу F (x), то для кожного інтервалу можна визначити теоретичні ймовірності pi попадання значень випадкової величини Х у цей інтервал, а отже, і теоретичні частоти . Для обчислення ймовірностей pi використовують формули: (26) Зазначимо, що для обчислення ймовірностей pi і pm у формулі (26) покладають, відповідно, і . Тоді . Отримані результати обчислень зручно записати у формі таблиці:
Згідно з критерієм Пірсона для перевірки гіпотези H0 вводиться випадкова величина (статистика) K: На підставі даних вибірки, записаних у таблиці, обчислюють емпіричне значення критерію Пірсона: Відомо, що при n → ∞ закон розподілу статистики K прямує до закону розподілу з k = m − r −1 ступенями вільності, де m – кількість груп у статистичному розподілі вибірки; r − кількість параметрів гіпотетичного розподілу A (наприклад, r = 2 для нормального розподілу, r =1 для розподілу Пуассона, r =0 для рівномірного розподілу). Для критерію будують правосторонню критичну область за правилом: P{ > кр.}=a (27) За заданим рівнем значущості α і кількістю ступенів вільності k із таблиці критичних точок розподілу (в якій дано розв’язки рівняння (27)) знаходять критичну точку k кр=(a, k). Порівнюємо значення kкр і Кспост: якщо Кспост ≥ kкр то гіпотезу H0 відхиляють; якщо ж Кспост < kкр, то гіпотезу H0 приймають. Застосування критерію вимагає дотримання таких умов: 1) експериментальні дані мають бути незалежними, тобто вибірка має бути випадковою; 2) обсяг вибірки має бути достатньо великим (практично не меншим ніж 50 одиниць), а частота кожної групи – не меншою за 5. Якщо остання умова не виконується, то проводиться попереднє об’єднання нечисленних груп. Критерій згоди Пірсона дає відповідь на питання, чи розбіжність між емпіричними і теоретичними частотами зумовлена випадковістю, чи вона є значущою. Як і будь-який інший критерій він не доводить справедливостігіпотези H0, а лише дозволяє встановити на прийнятному рівні значущості узгодженість чи неузгодженість гіпотези H0, з даними спостережень. Приклад. При рівні значущості перевірити гіпотезу про нормальний розподіл генеральної сукупності, якщо відомі емпіричні і теоретичні частоти
Розв’язання Складаємо таблицю для обчислення -критерію.
Контроль обчислень: – обчислення правильні. Кількість ступенів вільності: s=8, k=s-3=5. За таблицею критичних точок -розподілу (додаток 4) за рівнем значущості і кількістю ступенів вільності k=5 знаходимо . Оскільки , то немає підстав відхилити нульову гіпотезу. Отже, розбіжність емпіричних та теоретичних частот незначуща, дані спостережень узгоджуються з гіпотезою про нормальний розподіл генеральної сукупності. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |