АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Числові характеристики статистичного розподілу

Читайте также:
  1. I. Схема характеристики.
  2. V. Для дискретної випадкової величини Х, заданої рядом розподілу, знайти:
  3. Акустические колебания, их классификация, характеристики, вредное влияние на организм человека, нормирование.
  4. Амплітудна і фазова частотні характеристики
  5. Антикризисные характеристики управления персоналом
  6. Антропометричні характеристики людини
  7. Антропометричні характеристики людини.
  8. БАЗОВЫЕ ХАРАКТЕРИСТИКИ ОБЩЕСТВА
  9. Біноміальний закон розподілу
  10. Бюджетна система України: основні характеристики
  11. Вибрация и ее характеристики
  12. Виды адаптации и их основные характеристики

На практиці часто замість повного вивчення даних вибірки буває достатньо обмежитися знаходженням їх числових характеристик.

По аналогії з числовими характеристиками ДВВ визначають вибіркові числові характеристики, замінюючи при цьому імовірності pi відносними частотами .

Числові характеристики, обчислені за вибіркою називаються статистиками.

Числові характеристики, обчислені за генеральною сукупностю називаються параметрами.

Наведемо основні статистики.

 

Означення. Мода це значення, яке в статистичному ряді зустрічається найчастіше (М0).

 

Правило обчислення моди: якщо всі значення в ряді зустрічаються однакову кількість разів, то цей ряд моди немає; якщо два сусідні значення зустрічаються однакову кількість разів, то мода дорівнює їх середньому арифметичному; якщо два несусідні значення зустрічаються однакову кількість разів, то ряд має дві моди і називається бімодальним, а якщо більше двох, то полімодальним.

Для інтервального варіаційного ряду розподілу з однаковими інтервалами моду обчислюють за формулою Орженцького:

,

де - нижня межа модального інтервалу, т.т. такого, що має найбільшу частоту.

- частоти передмодального, модального, післямодального інтервалу відповідно.

- довжина інтервалу.

 

Означення. Медіана – це значення, яке займає центральне місце у впорядкованому ряді розподілу (Ме).

 

Правило обчислення медіани: для дискретного впорядкованого варіаційного ряду з непарним числом елементів медіану знаходять як варіанту х з порядковим номером , тобто .

Для ряду з парним числом елементів медіану розраховують як середню арифметичну двох варіант з порядковими номерами та : .

Для інтервального ряду розподілу медіану обчислюють за формулою: , де - нижня межа медіанного інтервалу, – довжина медіанного інтервалу, – сума частот накопичених перед медіанним інтервалом, – половина суми частот, – частота медіанного інтервалу.

Примітка: медіанний інтервал визначається як інтервал, для якого накопичена частота дорівнює півсумі всіх частот ряду, або перевищує її.

 

Означення. Вибірковою середньою статистичного розподілу вибірки називають середню арифметичну значень її варіант з урахуванням їхніх частот , тобто

.

 

Вибіркова середня є основною характеристикою статистичного розподілу вибірки та аналогом математичного сподівання. ЇЇ узагальненням є поняття початкового емпіричного моменту.

 

Означення. Початковим емпіричним моментом s -того порядку Мs статистичного розподілу вибірки називається середнє арифметичне значення степенів порядку s варіант , тобто .

 

Розглянемо основні характеристики розсіювання значень вибірки навколо її середнього значення.

 

Означення. Розмахом вибірки R називають різницю між найбільшим та найменшим значеннями її варіант, тобто .

 

Означення. Вибірковою дисперсієюDВ статистичного розподілу вибірки називають середню арифметичну квадратів відхилень варіант від вибіркової середньої, тобто .

 

Для обчислення вибіркової дисперсії часто зручніше використовувати формулу .

Розмірність дисперсії дорівнює квадрату розмірності значень вибірки, що створює незручність у дослідженнях. Щоб її усунути, за характеристику розсіювання значень випадкової величини за результатами значень вибірки приймають вибіркове середнє квадратичне відхилення вибірки sВ, яке визначається рівністю:

 

Означення. Коефіцієнтом варіаціїV статистичного розподілу вибірки називається відношення середнього квадратичного відхилення до середньої арифметичної вираженого у відсотках.

Обчислюється за формулою:

.

 

Означення. Центральним емпіричним моментом s -того порядку тs статистичного розподілу вибірки називається середнє арифметичне значення степенів порядку s відхилень варіант від середньої вибіркової , тобто:

 

Зокрема, т 1=0, т 2= D В

Для оцінки відхилення статистичного розподілу вибірки від нормального розподілу використовують числові характеристики – асиметрію та ексцес.

 

Означення. Асиметрією АВ називають число, яке обчислюється за формулою:

де т 3 – центральний емпіричний момент 3-го порядку, s В – середнє квадратичне відхилення статистичного розподілу вибірки.

 

Означення. Ексцесом ЕВ статистичного розподілу вибірки називається число, яке обчислюється за формулою:

де т 4 – центральний емпіричний момент 4-го порядку, s В – середнє квадратичне відхилення статистичного розподілу вибірки.

 

Якщо випадкова величина Х розподілена за нормальним законом, то її асиметрія і ексцес дорівнюють нулю.

Усі вищезазначені формули можуть бути використані при обчисленні числових характеристик вибірки для випадку, коли емпіричні дані згруповані за допомогою інтервального варіаційного ряду, зокрема, якщо вважати, що – середини інтервалів.

Обчислення можна спростити, використовуючи метод добутків, в основі якого лежать рівновіддалені варіанти та наступна розрахункова таблиця

           
хі ki ui ui ki ui ki2 ki (ui+ 1)2

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)