АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Перевірка гіпотези про рівність часток ознаки двох сукупностей

Читайте также:
  1. IX. У припущенні про розподіл ознаки по закону Пуассона обчислити теоретичні частоти, перевірити погодженість теоретичних і фактичних частот на основі критерію Ястремського.
  2. Акти застосування права: поняття, ознаки, види, структура
  3. Атрибутивні ознаки і властивості культури
  4. Держава як суб’єкт міжнародного приватного права. Імунітет держави: поняття, ознаки, види.
  5. ДЕРЖАВНІ ОРГАНИ: ЇХ ОЗНАКИ, ХАРАКТЕРИСТИКА І ВИДИ
  6. Дискретний варіаційний ряд часток
  7. Для знаходження середнього квадрата ознаки складемо таблицю
  8. Доход, полученный по праву собственности на лучший по условиям хозяйствования участок, называется дифференциальной рентой.
  9. ЗАГАЛЬНЕ ПОНЯТТЯ. СУТНІСТЬ І ОЗНАКИ ДЕРЖАВИ
  10. Змістовний модуль 4. Статистична перевірка гіпотез. Елементи теорії кореляції і дисперсійного аналізу
  11. І. Статистичні гіпотези. Статистичний критерій перевірки нульової гіпотези.
  12. Кредитна система: суть, види, ознаки, складові

Задача порівняння часток (відносних частот) ознаки в двох сукупностях досить часто зустрічається на практиці. Наприклад, якщо вибіркова частка ознаки однієї сукупності відрізняється від такої ж частки в другій сукупності, чи вказує це на те, що наявність ознаки в одній сукупності дійсно ймовірніше, чи ця різниця часток є випадковою?

Сформулюємо задачу. Маємо дві сукупності, генеральні частки ознаки яких дорівнюють відповідно р1 і р2. Необхідно перевірити нульову гіпотезу про рівність генеральних часток, тобто Н0: р1 = р2. Для перевірки гіпотези Н0 із цих сукупностей взяті дві незалежні вибірки достатньо великого об’єму п1 і п2. Вибіркові частки ознаки рівні відповідно і , де т1 і т2 – відповідне число елементів першої і другої вибірки, що має дану ознаку.

При достатньо великих п1 і п2, вибіркові частки і мають наближено нормальний закон розподілу з математичним сподіванням р1 і р2 і дисперсіями і , тобто відповідно N (р1; ) і N (р2; ).

При справедливості гіпотези Н0: р1 = р2 = р різниця - має нормальний закон розподілу з математичним сподіванням М()= р‑р= 0і дисперсією .Тому статистика

має стандартний нормальний розподіл N(0;1)

В якості невідомого значення р що входить у вираз статистики t, беруть його найкращу оцінку , рівну вибірковій частці ознаки, якщо дві вибірки з’єднати в одну, тобто .

Вибір виду критичної області і перевірка гіпотези здійснюється таким же чином, як і вище, при перевірці гіпотези про рівність середніх.

Приклад. Контрольну роботу з математичної статистики по індивідуальним варіантам виконували студенти двох груп першого курсу. В першій групі було запропоновано 105 задач, з яких правильно розв’язано 60, у другій із 140 запропонованих правильно розв’язано 69. На рівні значимості 0,02 потрібно перевірити гіпотезу про відсутність суттєвої різниці в засвоєнні навчального матеріалу студентами обох груп.

Розв’язання

Припустимо, що частки розв’язаних задач студентами обох груп рівні, тобто Н0: р1 = р2 = р. В якості альтернативної візьмемо гіпотезу Н1: р1 ¹ р2. При справедливості гіпотези Н0 найкращою оцінкою р буде

= . Вибіркові частки розв’язаних задач для кожної групи і . Статистику критерію обчислимо за формулою:

При конкуруючій гіпотезі Н1: р1 ¹ р2 обираємо критичну двосторонню область: Ф(tкр)=1-0,02=0,98, звідки за таблицею значень функції Лапласа tкр= t0,98=2,33. Фактичне значення критерію менше критичного, тобто t<t0.98. Отже, гіпотеза Н0 приймається, тобто отримані дані не протирічать гіпотезі про однаковий рівень засвоєння навчального матеріалу студентами обох груп.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)