АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теорема додавання ймовірностей несумісних подій

Читайте также:
  1. S-M-N-теорема, приклади її використання
  2. а) відношенню кількості елементарних подій, що сприяють події до кількості всіх
  3. А) Додавання векторів
  4. Алгебра випадкових подій
  5. Види подій
  6. Випадкові події. Класифікація подій
  7. Випишіть українські землі, що напередодні 1941 р. були приєднані до складу УРСР, зазначте, коли і внаслідок яких подій це сталося.
  8. Властивості ймовірностей подій
  9. Властивості щільності ймовірностей
  10. Внешние эффекты (экстерналии). Теорема Коуза.
  11. Внешние эффекты, их виды и последствия. Теорема Коуза
  12. Вопрос 1 теорема сложения вероятностей

 

Якщо події А і В несумісні (АВ=Æ), то ймовірність суми цих подій дорівнює сумі їх ймовірностей

(3)


 

Наслідок 1. Ймовірність суми скінченої кількості попарно несумісних подій дорівнює сумі ймовірностей цих подій

.

Наслідок 2. Ймовірність протилежної до А, події дорівнює

Наслідок 3. Сума ймовірностей подій, що утворюють повну групу, дорівнює одиниці .

Задача 14. У ящику 10 червоних і 6 синіх ґудзиків. Навмання виймають два ґудзики. Яка ймовірність того, що ґудзики будуть одного кольору?

Розв’язання. Випробування – витягування з ящика двох ґудзиків. Подія А – ґудзики одного кольору; подія А1 – ґудзики червоні; подія А 2 – ґудзики сині.

Очевидно А=А12, і події А1 і А2 несумісні. Скористаємося формулою (3) . Спочатку обчислимо Р(А1) та Р(А2).

Число способів взяти 2 ґудзики з 16 дорівнює . Число випадків, сприятливих для події А1 дорівнює , сприятливих для події А2.

Одержимо, ;

.

Отже, .

Відповідь. .

 


Теорема додавання ймовірностей сумісних подій.

Якщо події А і В сумісні, то ймовірність суми цих подій дорівнює сумі їх ймовірностей без ймовірності їх добутку

(4)


 

Зауваження 1. Якщо події А та В незалежні, то формула (4) набуває вигляду: .

Зауваження 2. Якщо події А та В залежні, то формула (4) набуває вигляду:

або

.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)