|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Теорема ЛурьеРассмотрим нелинейную систему с одной однозначной нелинейностью z = Ф(e). Объединив вместе все остальные (линейные) звенья системы, представим ее в следующем виде (рис. 5.17): Рис. 5.17. Нелинейная система с обратной связью Пусть статическая характеристика Ф(е) безынерционного нелинейного элемента удовлетворяет следующим условиям: однозначна и непрерывна; Ф(0) = 0; e ∙Ф(e) > 0, т. е. график характеристики проходит через начало координат и располагается в первом и третьем квадрантах. Для этого практически важного случая А. И. Лурье[2] и В. Н. Постников предложили следующую форму функции Ляпунова (квадратичная форма от е плюс интеграл от нелинейности): . Пример. Пусть линейная часть системы имеет передаточную функцию Дифференциальное уравнение системы первого порядка в форме Коши запишется так: Выберем следующую функцию Ляпунова: . Продифференцируем эту функцию по времени, получим: Получили отрицательно-определенную функцию W (е), что позволяет сделать вывод об асимптотической устойчивости положения равновесия. Кроме того, замечаем, что функция определена для всех е и при . Поэтому положение равновесия асимптотически устойчиво в целом. Наконец, обратим внимание на то, что полученный результат справедлив для целого класса нелинейных функций Ф(е), удовлетворяющих введенным выше ограничениям. Таким образом, условия устойчивости не зависят от конкретного вида нелинейности и начальных условий. Устойчивость, не зависящая от начальных условий, называется устойчивостью в целом. Устойчивость, не зависящая от конкретного вида нелинейности, называется абсолютной устойчивостью. Асимптотическую устойчивость в целом для класса нелинейностей называют абсолютной устойчивостью. В рассмотренном примере системы первого порядка положение равновесия абсолютно устойчиво. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |