|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Фактори успіху для здійснення інтелектуальної підтримки управлінняОскільки інтелектуальні технології стають прийнятними інструментальними засобами для СППР і ВІС, доцільно розглянути чинники, які визначають успіх орієнтованих на знання систем, разом з тими чинниками, які забезпечують успіх будь-якої системи, що використовується окремими фахівцями. Зручність використання. Твердження щодо цієї властивості систем може здатися очевидним, але трудність досягнення справжньої, довгострокової зручності використання часто недооцінюється всіма сторонами до початку процесу їх упровадження. Фактично, зручність використання систем окремими професіоналами тільки недавно стала виявленою метою процесу розроблення програмного забезпечення, а інструментальні засоби й методології для його розроблення ще не враховують цю потребу. Зв'язність. Наскільки інтелектуальні методи мають успіх в адміністраторів стосовно доступу до широких і різних джерел Даних, настільки система стає активним фактором у підтримці логічно випливаючих рішень і настільки вона має забезпечувати зв язність джерел даних і тих точок, де рішення слід переглядати або здійснювати. Сумісність. Оскільки інтелектуальні (основані на знаннях) технології збільшують показники потужності СППР і ВІС та змінюють їх здатність від пасивної до активної підтримки творців Рішень, то компанії безумовно прийдуть до того, щоб створювати їх скоріше як одну систему чи як окрему частину процесів розроблення та прийняття рішень, ніж як корисні доповнення до них. однак для того, щоб це могло відбутися в широких масштабах, потужність таких систем має бути сумісною з тим, що може на-иватися електро-паперовою екологією корпорації. Легкий супровід. Супровід, нарощування і модифікування програмного забезпечення відповідно до змін вимог користувачів є «Ахіллесовою п'ятою» всього програмного забезпечення, а СППР і ВІС не є в цьому плані винятком. Довготермінова корисність СППР і ВІС значною мірою залежить від здатності компанії реагувати на ці запити. Ефективні системи мають створюватися відповідно до цієї вимоги дуже раціонально, використовуючи інструментальні засоби, які уможливлюють користувачам (хоча б за допомогою комп'ютерно грамотного асистента) змінювати відповідно інтерфейс системи, а також функціональні можливості без допомоги впроваджуючих осіб або формально визначеної технічної групи підтримки. Додаткова вартість. Оскільки технології, що ґрунтуються на знаннях, реалізують свій потенціал у СППР і ВІС, то стає очевидним, що здатність використовувати цей чинник для підвищення ефективності створення рішень суттєво відрізнить перемагаючі компанії від інших конкуруючих учасників. Машини правил Одним із напрямів розвитку орієнтованих на правила СППР, що набули останнім часом певного розвитку і поширення, є так звані машини правич {Rule-Machines), як середовище для розроблення та тестування бізнес-правил, що являють собою кодифіковану політику та практику прийняття рішень в організаціях, використовувані з метою отримання переваг у конкуруючому бізнесовому середовищі. Найвідомішими з машин правил є Visual Rule Studio™ і Business Rule Studio. Оскільки докладний розгляд програмних продуктів, що називаються машинами правил, виходить за межі завдань даного видання, зацікавлені читачі зможуть знайти більше інформації про це на Web-сайті WWW.RuIeMachines.com. 9.3. Дейтамайнінг — засоби інтелектуального аналізу даних у СППР 9.3.1. Розвиток і призначення дейтамайнінгу (Data Mining) У 70-х роках минулого століття широко застосовувалася практика, коли компанії наймали аналітиків з бізнесу, котрі, використовуючи статистичні пакети подібні SAS і SPSS, виконували аналіз трендів даних і проводили їх кластерний аналіз. Як тільки стало технологічно можливим і доцільним зберігати великі обсяги ниХ, менеджери виявили бажання самим мати доступ до даних, подібних тим, що генеруються в пам'яті касового апарата роздрібної торгівлі й аналізувати їх. Запровадження штрихових кодів і глобальна гіпертекстова система Інтернету також зробили реальною можливість для компаній збирати великі обсяги нових даних. Однак У зв'язку з цим виникло питання про інструментальні засоби добування корисної інформації з нагромаджених обсягів «сирих» даних. Ці засоби опісля отримали назву «Data Mining» (дейтамайнінг). Слід зауважити, що протягом багатьох років компанії проводили статистичні дослідження своїх даних. Коли статистик аналізує дані, то він спочатку висуває гіпотезу про можливий зв'язок між певними даними, а потім посилає запит до бази даних і використовує відповідні статистичні методи, щоб довести або спростувати сформульовану гіпотезу. Це підхід називається «режимом верифікації» («verification mode»). На противагу йому програмне забезпечення дейтамайнінгу функціонує в «режимі відкриття» (discovery mode), тобто виявляє приховані, часто невідомі для користувачів шаблони (patterns) зв'язків між даними, а не аналізує наперед створену гіпотезу щодо них. За останні роки надзвичайно зріс інтерес до дейтамайнінгу з боку ділових користувачів, котрі вирішили скористатися перевагами даної технології для отримання конкурентної переваги в бізнесі (див. http://www.datamining.com/). Зростаюча зацікавленість щодо впровадження дейтамайнінгу (ДМ) у результаті закінчилася появою низки комерційних продуктів, кожен з яких має таку саму назву, описаний низкою подібних елементів, але фактично має неоднакові функціональні можливості й ґрунтується на різних особливих технічних підходах. Менеджери з інформаційних технологій, що мають завдання підібрати відповідну СППР, часто безпосередньо зустрічаються зі складними питаннями стосовно реагування на потреби бізнес-користувачів через те, що засадні принципи створення дейтамайнінгу набагато складніші, ніж традиційні запити і формування звітів, крім того, вони відчувають підсилений тиск щодо часу реалізації потреб користувачів, тобто користувачі вимагають розробити дейтамайнінг якомога швидше. Проте очевидною перешкодою для розроблення і впровадження в корпораціях рішень з Дейтамайнінгу є наявність багатьох різних підходів до нього, що мають свої певні властивості й переваги, у той час як фактично тільки кількома основними методами формуються основи більшості систем ДМ. У цьому контексті важливою є однозначна ін-еРпретація самого поняття дейтамайнінгу. Дейтамайнінг (Data mining) — це тип аналітичних додатків, які підтримують рішення, розшукуючи за прихованими шаблонами (patterns) інформацію в базі даних. Цей пошук може бути зроблений або користувачем (тобто тільки за допомогою виконання запитів) або інтелектуальною програмою, яка автоматично розшукує в базах даних і знаходить важливі для користувача зразки інформації. Відповіді на інформаційні запити подаються в бажаній для користувача формі (наприклад, у вигляді діаграм, звітів тощо). Англомовний термін «Data mining» часто перекладається як «добування даних»; «добування знань»; «добування інформації»; «аналіз, інтерпретація і подання інформації зі сховища даних»; «вибирання інформації із масиву даних». У даній книзі буде використовуватися як основний термін «дейтамайнінг» — україномовна транскрипція початково запровадженого і однозначно вживаного в англомовній літературі терміна «Data mining». Добування даних — це процес фільтрування великих обсягів даних для того, щоб підбирати відповідну до контексту задачі інформацію. Вживається також термін «Data surfing» (дослідження даних в Інтернеті). Корпорація IBM визначає ДМ, як «процес екстракції з великих баз даних заздалегідь невідомої, важливої інформації, що дає підстави для дій та використання її для розроблення критичних бізнесових рішень». Інші визначення не пов'язують ні з обсягом бази даних, ні з тим, чи використовується підготовлена інформація в бізнесі, але переважно ці умови загальні. Інструментальні засоби добування даних використовують різноманітні методи, включаючи доказову apryMeHTauiio(case-based reasoning), візуалізацію даних, нечіткі запити й аналіз, нейроме-режі та інші. Доказову аргументацію (міркування за прецедентами) застосовують для пошуку записів, подібних до якогось певного запису чи низки записів. Ці інструментальні засоби дають змогу користувачеві конкретизувати ознаки подібності підібраних записів. За допомогою візуалізації даних можна легко і швидко оглядати графічні відображення інформації в різних аспектах (ракурсах). Ці та інші методи частково були розглянуті раніше, а детальніше будуть розглянуті далі. Дейтамайнінг як процес виявлення в загальних масивах даних раніше невідомих, нетривіальних, практично корисних і доступних для інтерпретації знань, необхідних для прийняття рішень у різних галузях людської діяльності, практично має нічим не обмежені сфери застосування. Але, насамперед, методи ДМ нині більше всього заінтригували комерційні підприємства, що створюють проекти на основі сховищ даних (Data Warehousing), хоча наявність сховища даних не є обов'язковою умовою здійснення дейтамайнінгу. Досвід багатьох таких підприємств свідчить, що рівень рентабельності від застосування дейтамайнінгу може досягати 1000 %. Наприклад, відомі повідомлення про економічний ефект, за якого прибутки у 10—70 раз перевищували первинні витрати, що становили від 350 до 750 тис. дол. Є відомості про проект у 20 млн дол., який окупився всього за 4 місяці. Інший приклад — річна економія 700 тис. дол. за рахунок упровадження дейтамайнінгу в мережі універсамів у Великобританії. Дейтамайнінг являє собою велику цінність для керівників і аналітиків у їх повсякденній діяльності. Ділові люди усвідомили, що за допомогою методів ДМ вони можуть отримати відчутні переваги в конкурентній боротьбі. Описання інших успішних прикладів застосування дейтамайнінгу можна знайти в літературі [39]. 9.3.2. Доступне програмне забезпечення дейтамайнінгу Як уже зазначалося, нині на ринку програмних продуктів пропонуються десятки готових до використання систем дейтамайнінгу, причому деякі з них орієнтовані на широке охоплення технологічних засобів дейтамайнінгу, а інші ґрунтуються на специфічних методах (нейромережах, деревах рішень тощо). Охарактеризуємо найновіші системи ДМ з низкою різних підходів і методів дейтамайнінгу — PolyAnalyst, MineSet, KnowlengeSTUDIO. Вузькоорієнтовані на специфічні способи добування даних системи ДМ будуть згадуватися за ідентифікації найпоширеніших методів дейтамайнінгу в наступних параграфах даного розділу. PolyAnalyst Компанія «Мегап'ютер» виробляє і пропонує на ринку сімейство продуктів для дейтамайнінгу — PolyAnalyst. Система PolyAnalyst призначена для автоматичного і напівавтоматичного аналізу числових баз даних і добування із загальних масивів даних практично корисних знань. PolyAnalyst відшукує багатофак-. торні залежності між змінними в базі даних, автоматично будує і тестує багатовимірні нелінійні моделі, що виражають знайдену залежність, виводить класифікаційні правила на навчальних при- кладах, знаходить у даних багатовимірні кластери та будує алгоритми прийняття рішень. Нині PolyAnalyst використовується в більш ніж 20 країнах світу для розв'язання задач з різних галузей людської діяльності: бізнесу, фінансів, науки, медицини. Зараз це одна із самих потужних і в той же час доступних за ціною комерційних систем для дейтамайнінгу. Основу PolyAnalyst утворюють так звані машини досліджень (Exploration engines), тобто програмні модулі, що ґрунтуються на різних алгоритмах ДМ і призначені для автоматичного аналізу даних. Остання версія PolyAnalyst 4.3 містить 11 машин досліджень. MineSet — візуальний інструмент аналітика Компанія «Silicon Graphics» розробила систему дейтамайнінгу — MineSet, яка відрізняється специфічними особливостями як на концептуальному, так і на технологічному рівнях. Акцент при цьому робиться на унікальну процедуру візуальної інтерпретації складних взаємозв'язків у багатовимірних даних. Система MineSet являє собою інструментарій для поглибленого інтелектуального аналізу даних на базі використання потужної візуальної парадигми. Характерною особливістю MineSet є комплексний підхід, що адаптує застосування не однієї, а кількох взаємодоповнюючих стратегій добування, аналізу й інтерпретації даних. Це дає користувачеві можливість вибирати найвідповід-ніший інструмент або ряд інструментів залежно від розв'язуваної задачі і видів використовуваних програмно-апаратних засобів. Архітектура MineSet має принципово відкритий характер — використовуючи стандартизований файловий формат, інші додатки можуть постачати дані для введення в MineSet, а також використовувати результати її роботи. Відкрита архітектура системи — це і основа для майбутнього її розширення, що передбачає можливість вбудовування нових компонентів на основі концепції інтеграції (plug-in). У свою чергу, інтерфейс прикладного профамування (АРІ) дає змогу інкорпорувати елементи MineSet в автономні додатки. KnowledgeSTUDIO KnowledgeSTUDIO є новою версією дейтамайнінгу корпорації з профамного забезпечення «ANGOSS» (http://www.angoss. com/). Система впроваджує найрозвинутіші методи ДМ у корпоративне середовище з тим, щоб підприємства могли досягати мак- симальної вигоди від своїх інвестицій у дані. Вона забезпечує високу продуктивність користувачів щодо розв'язання ділових проблем без суттєвих зусиль на навчання, як це, наприклад, потрібно для освоєння статистичного програмного забезпечення. Крім того, це також потужний інструментальний засіб для аналітиків. KnowledgeSTUDIO сумісна з основними статистичними пакетами програм. Наприклад, ця система не тільки читає і записує файли даних, але також і генерує коди статистичного пакета SAS. Із такими властивостями стосовно статистики моделюваль-ники можуть швидко й легко адаптувати успадковані статистичні аналізи. Система KnowledgeSTUDIO тісно інтегрується зі сховищами і вітринами даних. У такому разі дані можуть добуватися в режимі In-place Mining, тобто коли вони залишаються у вітрині або сховищі даних «на місці», автоматично використовуючи для цього «хвилі запитів», тобто серію тверджень SQL. Завдяки тому, що дані отримуються безпосередньо від джерела, дублювання не потребується. Альтернативно, з метою оптимізації ДМ дані можна вибирати з їх форматом зберігання, а потім дейтамайнінг виконується сервером високої продуктивності, який орієнтований на формат файлів KnowledgeSTUDIO. Технологія ДМ ANGOSS ActiveX інтегрує моделі для прогнозування з Web-базовими додатками і бізнесовими клієнт/сер-верними додатками. Дослідження даних за допомогою використання дерев рішень і графіки може бути розширене через Інтранет і Інтернет. Можна також застосовувати Java-розв'язування для розгортання моделей. Для виконання алгоритмів обчислення в проекті KnowledgeSTUDIO передбачено використання або віддаленого «обчислювального» сервера, або локальної робочої станції. У KnowledgeSTUDIO реалізована велика кількість методів дейтамайнінгу. Пропонується п'ять алгоритмів дерев рішень, три алгоритми нейромереж і алгоритм кластеризації «неконтрольова-ного навчання» (unsupervised). Має місце повне інтегрування з Додатками і бізнесовими процесами. Можна створювати нові додатки або вставляти дейтамайнінг у наявні додатки. Програмований комплекс KnowledgeSTUDIOSoftware (SDK) надає можливість розроблення додатків, наприклад створення моделей для прогнозування, з можливим використанням Visual Basic, PowerBuilder, Delphi, C-H-, або Java. Формування, випробування і оцінювання нових моделей може бути також автоматизованим. KnowledgeSTUDIO забезпечує різні шляхи, щоб візуально виразити і дослідити у великих базах даних зразки прихованих закономірностей. 9.3.3. Характеристика процесів і активностей дейтамайнінгу. Процеси дейтамайнінгу Традиційно мали місце два типи статистичних аналізів: підтверджуючий (confirmatory analysis) і дослідницький аналіз (exploratory analysis). У підтверджуючому аналізі будь-хто має конкретну гіпотезу і в результаті аналізу або підтверджує, або спростовує її. Однак недоліком підтверджуючого аналізу є недостатня кількість гіпотез у аналітика. За дослідницького аналізу виявляють, підтверджуються чи спростовуються підхожі гіпотези. Тут система, а не користувач, бере ініціативу за аналізу даних. Здебільшого термін «дейтамайнінг» використовується для описання автоматизованого процесу аналізу даних, в якому система сама бере ініціативу щодо генерування взірців, тобто дейтамайнінг належить до інструментальних засобів дослідницького аналізу. З погляду орієнтації на процес є три типи процесів дейтамайнін-РУ (рис. 9.7): відкриття (добування) (discovery,); моделювання передбачень (predictive modeling,); аналіз аномалій (forensic analysis). Відкриття є процесом перегляду бази даних для знаходження невидимих взірців (pattern) без наперед визначеної ідеї або гіпотези взагалі про те, що вони можуть бути. Інакше кажучи, програма бере ініціативу без попередніх міркувань стосовно того, що взірці (шаблони), які цікавлять користувачів, мають насправді місце і можуть подаватися у формі доречних запитів. У великих базах даних є так багато інформаційних аспектів, про які користувач практично може ніколи й не думати і не робити правильних запитів стосовно відповідних їм взірців. Ключовим питанням тут може бути кількість взірців, які можуть бути виражені й відкриті та якість інформації, що добувається. Саме цим і визначається потужність засобів відкриття (discovery) інформації. У разі моделювання передбачень добуваються взірці з бази даних для їх використання, щоб передбачити майбутнє. Моделювання передбачень дає змогу користувачеві створювати записи з деякими невідомими дослідницькими значеннями, і система визначає ці невідомі значення, які ґрунтуються на попередніх шаблонах, що відкриваються з бази даних. У той час як відкриття знаходить взірці в даних, за прогнозуючого моделювання взірці застосовуються для того, щоб підібрати значення для нових елементів даних, і в цьому полягає істотна відмінність між цими видами процесів дейтамайнінгу. Аналіз аномалій (forensic analysis) є процесом застосування вибраних взірців (шаблонів) для виявлення аномалій або незвичайних елементів даних. Щоб виокремити незвичайні елементи, спершу потрібно знайти те, що є нормою, а вже потім виявляти за Допомогою заданих порогових величин ті елементи, які відхиляються від звичайних. Зокрема, сюди відноситься виявлення деві-тації, тобто відхилення від правильного курсу. Кожний із цих процесів може бути далі охарактеризований виділенням відповідних прийомів. Наприклад, є кілька методів відкриття взірців: правило «ЯКЩО..., ТО», асоціації, афін-ність (суміжність) тощо. У той час, коли правило «ЯКЩО..., ТО» для людини звичне, то асоціативні правила є новими. Вони стосуються групування елементів даних (наприклад, коли хтось купує один продукт, то за звичкою чи збігом обставин він може купити інший продукт у той самий час; такий процес, зазвичай, пов'язаний з аналізом ринкового кошика покупця). Потужність системи відкриття вимірюється кількістю типів і загальністю взірців, які можна знайти і виразити придатною для використання мовою. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.) |