АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Прийняття ризикованих рішень за допомогою функції вигідності

Читайте также:
  1. I. Сприйняття нового матеріалу.
  2. II. Основні напрями роботи, завдання та функції управління
  3. II. Порядок прийняття і звільнення працівників
  4. II. Сприйняття нового матеріалу
  5. III. Прийняття попереднього рішення
  6. IV. Сприйняття й засвоєння учнями навчального матеріалу.
  7. V. Сприйняття та засвоєння учнями навчального матеріалу.
  8. V. Сприйняття та засвоєння учнями нового матеріалу.
  9. Аби розжалобити аудиторію й домогтися від неї прийняття положень оратора. Найчастіше
  10. Аварійний комісар: поняття, функції.
  11. Адміністративна відповідальність: поняття, мета, функції, принципи та ознаки.
  12. Адміністративна служба, її завдання, функції.

Кількісна оцінка пріоритетності альтернативних дій, яку називають ступенем вигідності (переваги, utility), залежить від особистих характеристик керівника і тому має бути віднос­ною (безрозмірною) величиною. Поняття «вигідність» стосовно прийнят-тя ризикованих рішень відповідає концепції фон Нейма­на—Моргенштерна, згідно з якою вигідність (інколи кажуть ко­рисність) — це ймовірність деяких подій.

Концепція вигідності за фінансових операцій основана на зі­ставленні кожним керівником двох альтернатив: ризикованої, оцінкою якої є математичне сподівання доходу або збитку, та га­рантованої, котра дає стабільний дохід або збиток (величиною х) за будь-яких умов.

Нехай ризикована альтернатива — базовий контракт (лотерея) <A,q,B> оцінюється таким розподілом імовірностей: дохід вели­чиною А з імовірністю q, а збиток величиною В з імовірністю \-q. Числа А і В можна вибирати довільними, але їх порядок має від­повідати значенню сум грошей, якими оперує керівник у процесі прийняття рішень.

Математичне сподівання доходу за реалізації базового конт­ракту залежить від величини q при фіксованих значеннях А та В.


Визначення. Співвідношення між гарантованим доходом очікуваним результатом M(q), за якого вибір для ОПР між двома стратегіями стає однаковим, визначає еквівалентний базовий кон-тракт з величиною ймовірності q.

У такому разі можуть мати місце три варіанти вибору:

1. Обережна ОПР (яка, зазвичай, не ризикує) вибирає таке значення q: M(q)>x.

2. Нейтральна (байдужа) до ризику ОПР: M(q)=x.

3. Ризикована ОПР: M(q) <х.

Вигідність U(x) визначається значенням q в базовому контрак­ті за відомих параметрів А і В, яке вибирається керівником залеж­но від контексту прийняття рішень і здатності приймати ризикова­ні рішення. На рис. 6.8. зображені вигляди основних типів функцій вигідності залежно від відношення ОПР до ризику — бажає ри­зикувати, не бажає ризикувати і нейтральна (байдужа) до ризику. В останньому разі вибір альтернативи за допомогою функції ви­гідності й за допомогою дерева рішень (оптимальна альтернатива має найбільше значення математичного сподівання прибутку) дає однакові результати.

Рис. 6.8. Основні типи функції вигідності

Якщо функція U(x) відома, то проблема вибору альтернатив­них дій зводиться до оцінювання вигідності кожної альтернати­ви, на підставі чого вибирається оптимальна (за найбільшим зна­ченням вигідності) альтернатива.



 


6.3.2.4. Сітьові і оптимізаційні моделі

Планування і управління проектом, проблеми розмі­щення, призначення, розподілу і транспортування можна розв'я­зувати з використанням сітьових та оптимізаційних моделей. На­приклад, ми можемо побудувати і аналізувати сітьовий графік розроблення проекту, використовуючи програмне забезпечення управління проектом. «Управління проектом» є популярною ка­тегорією готового програмного забезпечення підтримки прийнят­тя рішень, наприклад Microsoft Project можна застосовувати, щоб ефективно спланувати, керувати і отримувати проектну інформа­цію. У той час, як багато користувачів обчислювальних систем добре обізнані з програмами підтримки управління проектами, не кожний усвідомлює, що вони базуються на моделях сітьового по­току (потоках у мережах). Ці моделі — спеціально структуровані задачі лінійного програмування.

Аналітики СППР можуть визначити інші мережі. Наприклад, можна розробити мережу можливих маршрутів авіаліній і роз­кладів (планів) і зіставити відповідні витрати. Ряд маршрутів може аналізуватися з застосуванням низки евристичних або кі­лькісних інструментальних засобів. Крім управління проектом і маршрутизації літальних апаратів сітьові моделі можна застосо­вувати для виробничого й календарного планування викорис­тання агрегатів, планування персоналу і складання розкладів, розподільного використання земель, планування розкладу за­нять, заводського розміщення (розміщення обладнання), управ­ління міжнаціональним рухом грошових засобів (готівки) та для створення інтегрованої системи «виробництво-запаси-розпо-діл». Часто сітьова модель може бути зображена, як множина вершин і дуг. Раніше була розглянута система PERT для плану­вання розроблення функціональної задачі стосовно інформацій­ної системи.

Найчастіше моделі оптимізації включають у СППР, щоб розв'язувати проблеми розподілу ресурсів. Менеджери час­то намагаються розподіляти продуктивні ресурси, наприклад, сировину, людей, гроші або час, які можна використовува­ти по-різному. Проблема полягає у визначенні найкращого шляху їх використання. Менеджерам потрібно визначати те, що здається «найкращим», але, зазвичай, у такому разі мається на увазі максимізація прибутку, мінімізація витрат, поліпшен­ня якості продукції або мінімізація ризику відмови облад­нання.


6.3.2.5. Імітаційні (симуляційні) моделі

У компаніях часто виникають завдання щодо планування виробництва нового продукту або побудови нової фабрики. Хоча можна скористатися прямим аналізом, менеджерам водночас потріб­но приймати багато взаємопов'язаних побічних рішень. Напри­клад, налагодження виробництва нового продукту потребує роз­в'язання питань щодо обладнання, календарного планування і упра­вління, способів організації виробництва. Багато факторів вплива­ють на ці рішення, включаючи потребу в досягненні певного обсягу виробництва і витрат, які асоціюються з досягненням цієї мети. Імі­тація дискретних подій і моделі для розрахунку собівартості можуть допомогти оцінити комплексні, взаємопов'я-зані проблеми.

Термін симуляція (Simulation) або імітація має багато значень за­лежно від дисципліни, де він використовується. У контексті ство­рення СППР імітація взагалі стосується методики проведення експе­риментів на комп'ютерно-базованій моделі, що називається іміта­ційною моделлю. Велика кількість проблем може бути розв'язана з застосуванням імітації, включаючи управління запасами і дефіцитом, планування і розподілення робочої сили, управління чергами і лікві­дацією скупченостей, питання надійності і заміни обладнання, упоряд­ковування технологічних операцій і календарне планування. Доклад­ніше відомості щодо імітаційних моделей можна знайти в [37].

Машинна імітація досить часто застосовується в орієнтованих на моделі СППР. Нині кілька програмних виробів доступні для створення імітаційних моделей. Simul8 (Visual Thinking Inc.) є ПК-базованим пакетом імітації, що коштує $500. Він має аніма­цію і візуально оснований інтерфейс. Розширений корпорацією «Imagine That!» цей пакет став дорожчим і комплекснішим іміта­ційним пакетом. @RISK компанії «Palisades» використовує імі­таційну модель Монте-Карло. Більше інформації про імітацію можна знайти за адресою: http://www.informs-cs.org/.

6.3.2.6. Мови моделювання і електронні таблиці

Моделі можна розробляти за допомогою різних мов програмування, наприклад Java чи C++, та великої множини па­кетів програм, включаючи електронні таблиці і пакети моделю­вання. Електронні таблиці досить просто використовують для побудови орієнтованих на моделі настільних СППР. Пакети мо­делювання призначені для того, щоб допомагати користувачам


будувати моделі й маніпулювати ними. Системи управління мо­делями забезпечують підтримку різних фаз рішення.

На ринку програмних продуктів є багато пакетів мов планування і моделювання. Типові додатки моделей планування уможливлю­ють: фінансове прогнозування; планування людських ресурсів; pro forma підготовлення фінансових звітів; планування прибутку; роз­рахунок рентабельності капіталовкладень; прогнозування збуту; розроблення маркетингових рішень; аналіз інвестицій; аналіз злиття і поглинання фірм; планування податків; прийняття рішень типу «орендувати чи купити»; оцінювання ризику нового заходу.

На закінчення розгляду орієнтованих на моделі СППР, заува­жимо, що навчитися будувати моделі й орієнтовані на моделі СППР є складним завданням, яке потребує виконання великої попередньої роботи. Професіоналам ІСМ, які хочуть будувати моделі, потрібно мати високий рівень кваліфікації в науці управ­ління і дослідженні операцій. Якщо менеджери і ІСМ професіо­нали хочуть розробити ефективну орієнтовану на моделі СППР, то їм, можливо, потрібно буде розширити свої знання в цих нау­ках. Якщо вчені з управління хочуть сприяти розробленню СППР, то вони мусять мати дуже широке розуміння систем під­тримки прийняття рішень і менше зосереджуватися на специфіч­них кількісних інструментальних засобах і технологіях.

Орієнтовані на моделі СППР містять важливі інструментальні засоби підтримки менеджерів. Інтерес менеджерів до орієнтова­них на дані СППР і групові СППР, що спостерігається останнім часом, не повинен обмежувати їхні потреби до нових версій мо­дельно-базованих систем і до отримання нових можливостей за­вдяки використанню Web-технологій. Менеджерам і аналітикам СППР потрібно активно включатися в процес виявлення цілей створення орієнтованих на моделі СППР та їх можливостей.

6.3.3. Приклади орієнтованих на моделі СППР 6.3.3.1. СППР Analytics 2.0


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)