|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Дифференциал сложной функции нескольких переменныхПредположим, что в уравнении и являются функциями независимых переменных и В этом случае есть сложная функция от аргументов и Конечно, можно выразить и непосредственно через и а именно: Предположим, что функции имеют непрерывные частные производные по всем своим аргументам и поставим задачу: вычислить и исходя из уравнений и и не пользуясь уравнением Дадим аргументу приращение сохраняя значение неизменным. Тогда, в силу уравнений и получат приращения и Но если и получают приращения и то и функция получит приращение определяемое формулой: где и при и Разделим все члены этого равенства на Если то и (в силу непрерывности функций и Но тогда и тоже стремятся к нулю. Переходя к пределу при получим: Если бы мы дали приращение переменному а оставили неизменным, то с помощью аналогичных рассуждений нашли бы: Для случая большего числа переменных формулы и естественным образом обобщаются. Например, если есть функция четырех аргументов а каждый из них зависит от и то формулы и принимают вид: Если задана функция где в свою очередь зависят от одного аргумента то, по сути дела, является функцией только одного переменного и можно ставить вопрос о нахождении производной Эта производная вычисляется по первой из формул но так как функции только одного аргумента то частные производные обращабтся в обыкновенные, кроме того, поэтому Эта формула носит название формулы для вычисления полной производной (в отличие от частной производной ). Найдем далее полный дифференциал сложной функции, определенной равенствами и Подставим выражения и определенные равенствами и в формулу полного дифференциала: Получаем: Произведем следующие преобразования в правой части: Но Равенство с учетом равенств можно переписать так: Сравнивая и можем сказать, что выражение полного дифференциала функции нескольких переменных (дифференциала первого порядка) имеет тот же вид, т.е. форма дифференциала первого порядка инвариантна, являются ли и независимыми переменными или функциями независимых переменных. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |