АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Несобственные интегралы от разрывных функций

Читайте также:
  1. Ms Excel: мастер функций. Логические функции.
  2. Автоматизация функций в социальной работе
  3. Алгоритм построения графиков функций вида
  4. АНАЛИЗ ФУНКЦИЙ СПЕЦИАЛИСТОВ ПО СТРАТЕГИЧЕСКОМУ МЕНЕДЖМЕНТУ И ПОЛНОМОЧИЙ ОРГАНОВ УПРАВЛЕНИЯ ОРГАНИЗАЦИИ, ПРИНИМАЮЩИХ СТРАТЕГИЧЕСКИЕ РЕШЕНИЯ.
  5. Анализ функций управления
  6. Б) Вычисление тригонометрических функций.
  7. Ввод функций вручную
  8. Взаимная ортогональность собственных функций эрмитовых операторов
  9. Взаимосвязь правопорядка и функций государства
  10. Возрастание и убывание функций. Экстремумы функции
  11. Вопрос 17 Принципы,функций и формы оплаты труда
  12. Вопрос 9 цели и функций системы управления

Пусть функция определена и непрерывна при а при терпит разрыв. Тогда

Если предел, стоящий справа существует, то несобственный интеграл называется сходящимся, а если не существует, то – расходящимся.

Аналогично, если определена и непрерывна при а при терпит разрыв, то

Если имеет разрыв в какой-нибудь промежуточной точке отрезка то по определению

Если оба интеграла в правой части сходятся, то сходится и интеграл этот интеграл расходится, если расходится хотя бы один из интегралов справа.

Пример 1. .

Пример 2. .

Вычислим каждый интеграл отдельно.

.

Следовательно, расходится.

Если бы мы стали вычислять данный интеграл, не обращая внимания на разрыв подынтегральной функции в точке то получили бы неверный результат: что невозможно.

Если определенная на имеет внутри этого отрезка конечное число точек разрыва то

если каждый из несобственных интегралов в правой части сходится. Если же хотя бы один из этих интегралов расходится, то и тоже расходится.

Для определения сходимости несобственных интегралов от разрывных функций и оценки их значений часто могут быть применены теоремы, аналогичные тем, которые были для оценки интегралов с бесконечными пределами.

Теорема 1. Если на функции и разрывны только в точке причем во всех точках этого отрезка выполнены неравенства и сходится, то также сходится, причем

Теорема 2. Если на функции и разрывны только в точке причем во всех точках этого отрезка выполнены неравенства и расходится, то и расходится.

Теорема 3. Если знакопеременная функция на разрывная только в точке и сходится, то сходится и причем говорят, что он сходится абсолютно.

Пример. Сходится ли

сходится.

Следовательно, тоже сходится, причем он

Ряды

Лекция 19.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)