Основные методы интегрирования
Для вычисления данного интеграла мы должны, если это возможно, пользуясь теми или иными способами, привести его к табличным интегралам и таким образом найти искомый результат. Рассмотрим основные методы интегрирования.
1. Метод разложения.
Пусть
Тогда на основании четвертого свойства неопределенного интеграла имеем
По возможности слагаемые и стараются подобрать так, чтобы интегралы от них находились непосредственно.
Пример 1.
Нет надобности после каждого слагаемого ставить произвольную постоянную, потому что сумма произвольных постоянных есть также произвольная постоянная, которую мы пишем в конце.
Пример 2.
Пример 3.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | Поиск по сайту:
|