|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Знакочередующиеся ряды. Теорема ЛейбницаБудем теперь рассматривать ряды, члены которых имеют чередующиеся знаки, т.е. ряды вида где Теорема. Если в знакочередующемся ряде
члены таковы, что и то ряд Доказательство. Рассмотрим сумму
Из условия
В силу условия
Тем самым мы доказали, что Замечание 1. Теорема Лейбница справедлива, если неравенства Замечание 2. Если знакочередующийся ряд удовлетворяет условию теоремы Лейбница, то нетрудно оценить ошибку, которая получится, если заменить его сумму Пример. Этот ряд сходится, так как 1) 2) Сумма первых Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.252 сек.) |