|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Случай комплексных корней знаменателяНапомним, что комплексные корни многочлена с действительными коэффициентами всегда попарно сопряжены. В разложении многочлена на действительные множители каждой паре комплексных корней многочлена соответствует выражение вида Теорема 2. Если
где Доказательство. Напишем тождество:
Справедливое при любых
но Таким образом, отсюда или При этих значениях коэффициентов
Сокращая последнюю дробь в равенстве (4) на Применяя теперь к правильной дроби
то дробь
Коэффициенты Таким образом, мы видим, что всякая правильная рациональная дробь представляется в виде суммы простейших рациональных дробей. А интегрировать простейшие рациональные дроби мы умеем. Следовательно, мы теперь можем проинтегрировать любую дробную рациональную функцию.
Лекция 13. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.393 сек.) |